File: block.cpp

package info (click to toggle)
graphviz 2.20.2-3
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 53,344 kB
  • ctags: 25,412
  • sloc: ansic: 194,965; sh: 18,984; makefile: 3,977; cpp: 3,330; yacc: 2,957; xml: 2,428; tcl: 1,861; cs: 1,489; objc: 1,061; perl: 761; lex: 398; awk: 163; python: 41; ruby: 32; php: 28
file content (406 lines) | stat: -rw-r--r-- 11,868 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
/**
 * \brief A block is a group of variables that must be moved together to improve
 * the goal function without violating already active constraints.
 * The variables in a block are spanned by a tree of active constraints.
 *
 * Authors:
 *   Tim Dwyer <tgdwyer@gmail.com>
 *
 * Copyright (C) 2005 Authors
 *
 * This version is released under the CPL (Common Public License) with
 * the Graphviz distribution.
 * A version is also available under the LGPL as part of the Adaptagrams
 * project: http://sourceforge.net/projects/adaptagrams.  
 * If you make improvements or bug fixes to this code it would be much
 * appreciated if you could also contribute those changes back to the
 * Adaptagrams repository.
 */
#include <cassert>
#include "pairingheap/PairingHeap.h"
#include "constraint.h"
#include "block.h"
#include "blocks.h"
#ifdef RECTANGLE_OVERLAP_LOGGING
#include <fstream>
using std::ios;
using std::ofstream;
using std::endl;
#endif
using std::vector;

typedef vector<Constraint*>::iterator Cit;

void Block::addVariable(Variable *v) {
	v->block=this;
	vars->push_back(v);
	weight+=v->weight;
	wposn += v->weight * (v->desiredPosition - v->offset);
	posn=wposn/weight;
}
Block::Block(Variable *v) {
	timeStamp=0;
	posn=weight=wposn=0;
	in=NULL;
	out=NULL;
	deleted=false;
	vars=new vector<Variable*>;
	if(v!=NULL) {
		v->offset=0;
		addVariable(v);
	}
}

double Block::desiredWeightedPosition() {
	double wp = 0;
	for (vector<Variable*>::iterator v=vars->begin();v!=vars->end();v++) {
		wp += ((*v)->desiredPosition - (*v)->offset) * (*v)->weight;
	}
	return wp;
}
Block::~Block(void)
{
	delete vars;
	delete in;
	delete out;
}
void Block::setUpInConstraints() {
	setUpConstraintHeap(in,true);
}
void Block::setUpOutConstraints() {
	setUpConstraintHeap(out,false);
}
void Block::setUpConstraintHeap(PairingHeap<Constraint*>* &h,bool in) {
	delete h;
	h = new PairingHeap<Constraint*>(&compareConstraints);
	for (vector<Variable*>::iterator i=vars->begin();i!=vars->end();i++) {
		Variable *v=*i;
		vector<Constraint*> *cs=in?&(v->in):&(v->out);
		for (vector<Constraint*>::iterator j=cs->begin();j!=cs->end();j++) {
			Constraint *c=*j;
			c->timeStamp=blockTimeCtr;
			if (c->left->block != this && in || c->right->block != this && !in) {
				h->insert(c);
			}
		}
	}
}	
void Block::merge(Block* b, Constraint* c) {
#ifdef RECTANGLE_OVERLAP_LOGGING
	ofstream f(LOGFILE,ios::app);
	f<<"  merging on: "<<*c<<",c->left->offset="<<c->left->offset<<",c->right->offset="<<c->right->offset<<endl;
#endif
	double dist = c->right->offset - c->left->offset - c->gap;
	Block *l=c->left->block;
	Block *r=c->right->block;
	if (vars->size() < b->vars->size()) {
		r->merge(l,c,dist);
	} else {
	       	l->merge(r,c,-dist);
	}
#ifdef RECTANGLE_OVERLAP_LOGGING
	f<<"  merged block="<<(b->deleted?*this:*b)<<endl;
#endif
}
/**
 * Merges b into this block across c.  Can be either a
 * right merge or a left merge
 * @param b block to merge into this
 * @param c constraint being merged
 * @param distance separation required to satisfy c
 */
void Block::merge(Block *b, Constraint *c, double dist) {
#ifdef RECTANGLE_OVERLAP_LOGGING
	ofstream f(LOGFILE,ios::app);
	f<<"    merging: "<<*b<<"dist="<<dist<<endl;
#endif
	c->active=true;
	wposn+=b->wposn-dist*b->weight;
	weight+=b->weight;
	posn=wposn/weight;
	for(vector<Variable*>::iterator i=b->vars->begin();i!=b->vars->end();i++) {
		Variable *v=*i;
		v->block=this;
		v->offset+=dist;
		vars->push_back(v);
	}
	b->deleted=true;
}

void Block::mergeIn(Block *b) {
#ifdef RECTANGLE_OVERLAP_LOGGING
	ofstream f(LOGFILE,ios::app);
	f<<"  merging constraint heaps... "<<endl;
#endif
	// We check the top of the heaps to remove possible internal constraints
	findMinInConstraint();
	b->findMinInConstraint();
	in->merge(b->in);
#ifdef RECTANGLE_OVERLAP_LOGGING
	f<<"  merged heap: "<<*in<<endl;
#endif
}
void Block::mergeOut(Block *b) {	
	findMinOutConstraint();
	b->findMinOutConstraint();
	out->merge(b->out);
}
Constraint *Block::findMinInConstraint() {
	Constraint *v = NULL;
	vector<Constraint*> outOfDate;
	while (!in->isEmpty()) {
		v = in->findMin();
		Block *lb=v->left->block;
		Block *rb=v->right->block;
		// rb may not be this if called between merge and mergeIn
#ifdef RECTANGLE_OVERLAP_LOGGING
		ofstream f(LOGFILE,ios::app);
		f<<"  checking constraint ... "<<*v;
		f<<"    timestamps: left="<<lb->timeStamp<<" right="<<rb->timeStamp<<" constraint="<<v->timeStamp<<endl;
#endif
		if(lb == rb) {
			// constraint has been merged into the same block
#ifdef RECTANGLE_OVERLAP_LOGGING
			if(v->slack()<0) {
				f<<"  violated internal constraint found! "<<*v<<endl;
				f<<"     lb="<<*lb<<endl;
				f<<"     rb="<<*rb<<endl;
			}
#endif
			in->deleteMin();
#ifdef RECTANGLE_OVERLAP_LOGGING
			f<<" ... skipping internal constraint"<<endl;
#endif
		} else if(v->timeStamp < lb->timeStamp) {
			// block at other end of constraint has been moved since this
			in->deleteMin();
			outOfDate.push_back(v);
#ifdef RECTANGLE_OVERLAP_LOGGING
			f<<"    reinserting out of date (reinsert later)"<<endl;
#endif
		} else {
			break;
		}
	}
	for(vector<Constraint*>::iterator i=outOfDate.begin();i!=outOfDate.end();i++) {
		v=*i;
		v->timeStamp=blockTimeCtr;
		in->insert(v);
	}
	if(in->isEmpty()) {
		v=NULL;
	} else {
		v=in->findMin();
	}
	return v;
}
Constraint *Block::findMinOutConstraint() {
	if(out->isEmpty()) return NULL;
	Constraint *v = out->findMin();
	while (v->left->block == v->right->block) {
		out->deleteMin();
		if(out->isEmpty()) return NULL;
		v = out->findMin();
	}
	return v;
}
void Block::deleteMinInConstraint() {
	in->deleteMin();
#ifdef RECTANGLE_OVERLAP_LOGGING
	ofstream f(LOGFILE,ios::app);
	f<<"deleteMinInConstraint... "<<endl;
	f<<"  result: "<<*in<<endl;
#endif
}
void Block::deleteMinOutConstraint() {
	out->deleteMin();
}
inline bool Block::canFollowLeft(Constraint *c, Variable *last) {
	return c->left->block==this && c->active && last!=c->left;
}
inline bool Block::canFollowRight(Constraint *c, Variable *last) {
	return c->right->block==this && c->active && last!=c->right;
}

// computes the derivative of v and the lagrange multipliers
// of v's out constraints (as the recursive sum of those below.
// Does not backtrack over u.
// also records the constraint with minimum lagrange multiplier
// in min_lm
double Block::compute_dfdv(Variable *v, Variable *u, Constraint *&min_lm) {
	double dfdv=v->weight*(v->position() - v->desiredPosition);
	for(vector<Constraint*>::iterator it=v->out.begin();it!=v->out.end();it++) {
		Constraint *c=*it;
		if(canFollowRight(c,u)) {
			dfdv+=c->lm=compute_dfdv(c->right,v,min_lm);
			if(min_lm==NULL||c->lm<min_lm->lm) min_lm=c;
		}
	}
	for(vector<Constraint*>::iterator it=v->in.begin();it!=v->in.end();it++) {
		Constraint *c=*it;
		if(canFollowLeft(c,u)) {
			dfdv-=c->lm=-compute_dfdv(c->left,v,min_lm);
			if(min_lm==NULL||c->lm<min_lm->lm) min_lm=c;
		}
	}
	return dfdv;
}


// computes dfdv for each variable and uses the sum of dfdv on either side of
// the constraint c to compute the lagrangian multiplier lm_c.
// The top level v and r are variables between which we want to find the
// constraint with the smallest lm.  
// When we find r we pass NULL to subsequent recursive calls, 
// thus r=NULL indicates constraints are not on the shortest path.
// Similarly, m is initially NULL and is only assigned a value if the next
// variable to be visited is r or if a possible min constraint is returned from
// a nested call (rather than NULL).
// Then, the search for the m with minimum lm occurs as we return from
// the recursion (checking only constraints traversed left-to-right 
// in order to avoid creating any new violations).
Block::Pair Block::compute_dfdv_between(Variable* r, Variable* v, Variable* u, 
		Direction dir = NONE, bool changedDirection = false) {
	double dfdv=v->weight*(v->position() - v->desiredPosition);
	Constraint *m=NULL;
	for(Cit it(v->in.begin());it!=v->in.end();it++) {
		Constraint *c=*it;
		if(canFollowLeft(c,u)) {
			if(dir==RIGHT) { 
				changedDirection = true; 
			}
			if(c->left==r) {
			       	r=NULL; m=c; 
			}
			Pair p=compute_dfdv_between(r,c->left,v,
					LEFT,changedDirection);
			dfdv -= c->lm = -p.first;
			if(r && p.second) 
				m = p.second;
		}
	}
	for(Cit it(v->out.begin());it!=v->out.end();it++) {
		Constraint *c=*it;
		if(canFollowRight(c,u)) {
			if(dir==LEFT) { 
				changedDirection = true; 
			}
			if(c->right==r) {
			       	r=NULL; m=c; 
			}
			Pair p=compute_dfdv_between(r,c->right,v,
					RIGHT,changedDirection);
			dfdv += c->lm = p.first;
			if(r && p.second) 
				m = changedDirection && c->lm < p.second->lm 
					? c 
					: p.second;
		}
	}
	return Pair(dfdv,m);
}

// resets LMs for all active constraints to 0 by
// traversing active constraint tree starting from v,
// not back tracking over u
void Block::reset_active_lm(Variable *v, Variable *u) {
	for(vector<Constraint*>::iterator it=v->out.begin();it!=v->out.end();it++) {
		Constraint *c=*it;
		if(canFollowRight(c,u)) {
			c->lm=0;
			reset_active_lm(c->right,v);
		}
	}
	for(vector<Constraint*>::iterator it=v->in.begin();it!=v->in.end();it++) {
		Constraint *c=*it;
		if(canFollowLeft(c,u)) {
			c->lm=0;
			reset_active_lm(c->left,v);
		}
	}
}
/**
 * finds the constraint with the minimum lagrange multiplier, that is, the constraint
 * that most wants to split
 */
Constraint *Block::findMinLM() {
	Constraint *min_lm=NULL;
	reset_active_lm(vars->front(),NULL);
	compute_dfdv(vars->front(),NULL,min_lm);
	return min_lm;
}
Constraint *Block::findMinLMBetween(Variable* lv, Variable* rv) {
	Constraint *min_lm=NULL;
	reset_active_lm(vars->front(),NULL);
	min_lm=compute_dfdv_between(rv,lv,NULL).second;
	return min_lm;
}

// populates block b by traversing the active constraint tree adding variables as they're 
// visited.  Starts from variable v and does not backtrack over variable u.
void Block::populateSplitBlock(Block *b, Variable *v, Variable *u) {
	b->addVariable(v);
	for (vector<Constraint*>::iterator c=v->in.begin();c!=v->in.end();c++) {
		if (canFollowLeft(*c,u))
			populateSplitBlock(b, (*c)->left, v);
	}
	for (vector<Constraint*>::iterator c=v->out.begin();c!=v->out.end();c++) {
		if (canFollowRight(*c,u)) 
			populateSplitBlock(b, (*c)->right, v);
	}
}
/**
 * Block needs to be split because of a violated constraint between vl and vr.
 * We need to search the active constraint tree between l and r and find the constraint
 * with min lagrangrian multiplier and split at that point.
 * Returns the split constraint
 */
Constraint* Block::splitBetween(Variable* vl, Variable* vr, Block* &lb, Block* &rb) {
#ifdef RECTANGLE_OVERLAP_LOGGING
	ofstream f(LOGFILE,ios::app);
	f<<"  need to split between: "<<*vl<<" and "<<*vr<<endl;
#endif
	Constraint *c=findMinLMBetween(vl, vr);
#ifdef RECTANGLE_OVERLAP_LOGGING
	f<<"  going to split on: "<<*c<<endl;
#endif
	split(lb,rb,c);
	deleted = true;
	return c;
}
/**
 * Creates two new blocks, l and r, and splits this block across constraint c,
 * placing the left subtree of constraints (and associated variables) into l
 * and the right into r.
 */
void Block::split(Block* &l, Block* &r, Constraint* c) {
	c->active=false;
	l=new Block();
	populateSplitBlock(l,c->left,c->right);
	r=new Block();
	populateSplitBlock(r,c->right,c->left);
}

/**
 * Computes the cost (squared euclidean distance from desired positions) of the
 * current positions for variables in this block
 */
double Block::cost() {
	double c = 0;
	for (vector<Variable*>::iterator v=vars->begin();v!=vars->end();v++) {
		double diff = (*v)->position() - (*v)->desiredPosition;
		c += (*v)->weight * diff * diff;
	}
	return c;
}
ostream& operator <<(ostream &os, const Block &b)
{
	os<<"Block:";
	for(vector<Variable*>::iterator v=b.vars->begin();v!=b.vars->end();v++) {
		os<<" "<<**v;
	}
	if(b.deleted) {
		os<<" Deleted!";
	}
    return os;
}