1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
/**
* \brief Solve an instance of the "Variable Placement with Separation
* Constraints" problem.
*
* Authors:
* Tim Dwyer <tgdwyer@gmail.com>
*
* Copyright (C) 2005 Authors
*
* This version is released under the CPL (Common Public License) with
* the Graphviz distribution.
* A version is also available under the LGPL as part of the Adaptagrams
* project: http://sourceforge.net/projects/adaptagrams.
* If you make improvements or bug fixes to this code it would be much
* appreciated if you could also contribute those changes back to the
* Adaptagrams repository.
*/
#include <cassert>
#include "constraint.h"
#include "block.h"
#include "blocks.h"
#include "solve_VPSC.h"
#include <math.h>
#include <sstream>
#ifdef RECTANGLE_OVERLAP_LOGGING
#include <fstream>
using std::ios;
using std::ofstream;
using std::endl;
#endif
using std::ostringstream;
using std::list;
using std::set;
IncVPSC::IncVPSC(const unsigned n, Variable *vs[], const unsigned m, Constraint *cs[])
: VPSC(n,vs,m,cs) {
inactive.assign(cs,cs+m);
for(ConstraintList::iterator i=inactive.begin();i!=inactive.end();i++) {
(*i)->active=false;
}
}
VPSC::VPSC(const unsigned n, Variable *vs[], const unsigned m, Constraint *cs[]) : cs(cs), m(m) {
bs=new Blocks(n, vs);
#ifdef RECTANGLE_OVERLAP_LOGGING
printBlocks();
assert(!constraintGraphIsCyclic(n,vs));
#endif
}
VPSC::~VPSC() {
delete bs;
}
// useful in debugging
void VPSC::printBlocks() {
#ifdef RECTANGLE_OVERLAP_LOGGING
ofstream f(LOGFILE,ios::app);
for(set<Block*>::iterator i=bs->begin();i!=bs->end();i++) {
Block *b=*i;
f<<" "<<*b<<endl;
}
for(unsigned i=0;i<m;i++) {
f<<" "<<*cs[i]<<endl;
}
#endif
}
/**
* Produces a feasible - though not necessarily optimal - solution by
* examining blocks in the partial order defined by the directed acyclic
* graph of constraints. For each block (when processing left to right) we
* maintain the invariant that all constraints to the left of the block
* (incoming constraints) are satisfied. This is done by repeatedly merging
* blocks into bigger blocks across violated constraints (most violated
* first) fixing the position of variables inside blocks relative to one
* another so that constraints internal to the block are satisfied.
*/
void VPSC::satisfy() {
list<Variable*> *vs=bs->totalOrder();
for(list<Variable*>::iterator i=vs->begin();i!=vs->end();i++) {
Variable *v=*i;
if(!v->block->deleted) {
bs->mergeLeft(v->block);
}
}
bs->cleanup();
for(unsigned i=0;i<m;i++) {
if(cs[i]->slack()<-0.0000001) {
#ifdef RECTANGLE_OVERLAP_LOGGING
ofstream f(LOGFILE,ios::app);
f<<"Error: Unsatisfied constraint: "<<*cs[i]<<endl;
#endif
//assert(cs[i]->slack()>-0.0000001);
throw "Unsatisfied constraint";
}
}
delete vs;
}
void VPSC::refine() {
bool solved=false;
// Solve shouldn't loop indefinately
// ... but just to make sure we limit the number of iterations
unsigned maxtries=100;
while(!solved&&maxtries>=0) {
solved=true;
maxtries--;
for(set<Block*>::const_iterator i=bs->begin();i!=bs->end();i++) {
Block *b=*i;
b->setUpInConstraints();
b->setUpOutConstraints();
}
for(set<Block*>::const_iterator i=bs->begin();i!=bs->end();i++) {
Block *b=*i;
Constraint *c=b->findMinLM();
if(c!=NULL && c->lm<0) {
#ifdef RECTANGLE_OVERLAP_LOGGING
ofstream f(LOGFILE,ios::app);
f<<"Split on constraint: "<<*c<<endl;
#endif
// Split on c
Block *l=NULL, *r=NULL;
bs->split(b,l,r,c);
bs->cleanup();
// split alters the block set so we have to restart
solved=false;
break;
}
}
}
for(unsigned i=0;i<m;i++) {
if(cs[i]->slack()<-0.0000001) {
assert(cs[i]->slack()>-0.0000001);
throw "Unsatisfied constraint";
}
}
}
/**
* Calculate the optimal solution. After using satisfy() to produce a
* feasible solution, refine() examines each block to see if further
* refinement is possible by splitting the block. This is done repeatedly
* until no further improvement is possible.
*/
void VPSC::solve() {
satisfy();
refine();
}
void IncVPSC::solve() {
#ifdef RECTANGLE_OVERLAP_LOGGING
ofstream f(LOGFILE,ios::app);
f<<"solve_inc()..."<<endl;
#endif
double lastcost,cost = bs->cost();
do {
lastcost=cost;
satisfy();
splitBlocks();
cost = bs->cost();
#ifdef RECTANGLE_OVERLAP_LOGGING
f<<" cost="<<cost<<endl;
#endif
} while(fabs(lastcost-cost)>0.0001);
}
/**
* incremental version of satisfy that allows refinement after blocks are
* moved.
*
* - move blocks to new positions
* - repeatedly merge across most violated constraint until no more
* violated constraints exist
*
* Note: there is a special case to handle when the most violated constraint
* is between two variables in the same block. Then, we must split the block
* over an active constraint between the two variables. We choose the
* constraint with the most negative lagrangian multiplier.
*/
void IncVPSC::satisfy() {
#ifdef RECTANGLE_OVERLAP_LOGGING
ofstream f(LOGFILE,ios::app);
f<<"satisfy_inc()..."<<endl;
#endif
splitBlocks();
long splitCtr = 0;
Constraint* v = NULL;
while(mostViolated(inactive,v)<-0.0000001) {
assert(!v->active);
Block *lb = v->left->block, *rb = v->right->block;
if(lb != rb) {
lb->merge(rb,v);
} else {
if(splitCtr++>10000) {
throw "Cycle Error!";
}
// constraint is within block, need to split first
inactive.push_back(lb->splitBetween(v->left,v->right,lb,rb));
lb->merge(rb,v);
bs->insert(lb);
}
}
#ifdef RECTANGLE_OVERLAP_LOGGING
f<<" finished merges."<<endl;
#endif
bs->cleanup();
for(unsigned i=0;i<m;i++) {
v=cs[i];
if(v->slack()<-0.0000001) {
//assert(cs[i]->slack()>-0.0000001);
ostringstream s;
s<<"Unsatisfied constraint: "<<*v;
throw s.str().c_str();
}
}
#ifdef RECTANGLE_OVERLAP_LOGGING
f<<" finished cleanup."<<endl;
printBlocks();
#endif
}
void IncVPSC::moveBlocks() {
#ifdef RECTANGLE_OVERLAP_LOGGING
ofstream f(LOGFILE,ios::app);
f<<"moveBlocks()..."<<endl;
#endif
for(set<Block*>::const_iterator i(bs->begin());i!=bs->end();i++) {
Block *b = *i;
b->wposn = b->desiredWeightedPosition();
b->posn = b->wposn / b->weight;
}
#ifdef RECTANGLE_OVERLAP_LOGGING
f<<" moved blocks."<<endl;
#endif
}
void IncVPSC::splitBlocks() {
#ifdef RECTANGLE_OVERLAP_LOGGING
ofstream f(LOGFILE,ios::app);
#endif
moveBlocks();
splitCnt=0;
// Split each block if necessary on min LM
for(set<Block*>::const_iterator i(bs->begin());i!=bs->end();i++) {
Block* b = *i;
Constraint* v=b->findMinLM();
if(v!=NULL && v->lm < -0.0000001) {
#ifdef RECTANGLE_OVERLAP_LOGGING
f<<" found split point: "<<*v<<" lm="<<v->lm<<endl;
#endif
splitCnt++;
Block *b = v->left->block, *l=NULL, *r=NULL;
assert(v->left->block == v->right->block);
double pos = b->posn;
b->split(l,r,v);
l->posn=r->posn=pos;
l->wposn = l->posn * l->weight;
r->wposn = r->posn * r->weight;
bs->insert(l);
bs->insert(r);
b->deleted=true;
inactive.push_back(v);
#ifdef RECTANGLE_OVERLAP_LOGGING
f<<" new blocks: "<<*l<<" and "<<*r<<endl;
#endif
}
}
#ifdef RECTANGLE_OVERLAP_LOGGING
f<<" finished splits."<<endl;
#endif
bs->cleanup();
}
/**
* Scan constraint list for the most violated constraint, or the first equality
* constraint
*/
double IncVPSC::mostViolated(ConstraintList &l, Constraint* &v) {
double minSlack = DBL_MAX;
#ifdef RECTANGLE_OVERLAP_LOGGING
ofstream f(LOGFILE,ios::app);
f<<"Looking for most violated..."<<endl;
#endif
ConstraintList::iterator end = l.end();
ConstraintList::iterator deletePoint = end;
for(ConstraintList::iterator i=l.begin();i!=end;i++) {
Constraint *c=*i;
double slack = c->slack();
if(c->equality || slack < minSlack) {
minSlack=slack;
v=c;
deletePoint=i;
if(c->equality) break;
}
}
// Because the constraint list is not order dependent we just
// move the last element over the deletePoint and resize
// downwards. There is always at least 1 element in the
// vector because of search.
if(deletePoint != end && minSlack<-0.0000001) {
*deletePoint = l[l.size()-1];
l.resize(l.size()-1);
}
#ifdef RECTANGLE_OVERLAP_LOGGING
f<<" most violated is: "<<*v<<endl;
#endif
return minSlack;
}
#include <map>
using std::map;
using std::vector;
struct node {
set<node*> in;
set<node*> out;
};
// useful in debugging - cycles would be BAD
bool VPSC::constraintGraphIsCyclic(const unsigned n, Variable *vs[]) {
map<Variable*, node*> varmap;
vector<node*> graph;
for(unsigned i=0;i<n;i++) {
node *u=new node;
graph.push_back(u);
varmap[vs[i]]=u;
}
for(unsigned i=0;i<n;i++) {
for(vector<Constraint*>::iterator c=vs[i]->in.begin();c!=vs[i]->in.end();c++) {
Variable *l=(*c)->left;
varmap[vs[i]]->in.insert(varmap[l]);
}
for(vector<Constraint*>::iterator c=vs[i]->out.begin();c!=vs[i]->out.end();c++) {
Variable *r=(*c)->right;
varmap[vs[i]]->out.insert(varmap[r]);
}
}
while(graph.size()>0) {
node *u=NULL;
vector<node*>::iterator i=graph.begin();
for(;i!=graph.end();i++) {
u=*i;
if(u->in.size()==0) {
break;
}
}
if(i==graph.end() && graph.size()>0) {
//cycle found!
return true;
} else {
graph.erase(i);
for(set<node*>::iterator j=u->out.begin();j!=u->out.end();j++) {
node *v=*j;
v->in.erase(u);
}
delete u;
}
}
for(unsigned i=0; i<graph.size(); i++) {
delete graph[i];
}
return false;
}
// useful in debugging - cycles would be BAD
bool VPSC::blockGraphIsCyclic() {
map<Block*, node*> bmap;
vector<node*> graph;
for(set<Block*>::const_iterator i=bs->begin();i!=bs->end();i++) {
Block *b=*i;
node *u=new node;
graph.push_back(u);
bmap[b]=u;
}
for(set<Block*>::const_iterator i=bs->begin();i!=bs->end();i++) {
Block *b=*i;
b->setUpInConstraints();
Constraint *c=b->findMinInConstraint();
while(c!=NULL) {
Block *l=c->left->block;
bmap[b]->in.insert(bmap[l]);
b->deleteMinInConstraint();
c=b->findMinInConstraint();
}
b->setUpOutConstraints();
c=b->findMinOutConstraint();
while(c!=NULL) {
Block *r=c->right->block;
bmap[b]->out.insert(bmap[r]);
b->deleteMinOutConstraint();
c=b->findMinOutConstraint();
}
}
while(graph.size()>0) {
node *u=NULL;
vector<node*>::iterator i=graph.begin();
for(;i!=graph.end();i++) {
u=*i;
if(u->in.size()==0) {
break;
}
}
if(i==graph.end() && graph.size()>0) {
//cycle found!
return true;
} else {
graph.erase(i);
for(set<node*>::iterator j=u->out.begin();j!=u->out.end();j++) {
node *v=*j;
v->in.erase(u);
}
delete u;
}
}
for(unsigned i=0; i<graph.size(); i++) {
delete graph[i];
}
return false;
}
|