1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
/* $Id$Revision: */
/* vim:set shiftwidth=4 ts=8: */
/*************************************************************************
* Copyright (c) 2011 AT&T Intellectual Property
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors: See CVS logs. Details at http://www.graphviz.org/
*************************************************************************/
#ifndef CLUSTERING_H
#define CLUSTERING_H
typedef struct Multilevel_Modularity_Clustering_struct *Multilevel_Modularity_Clustering;
struct Multilevel_Modularity_Clustering_struct {
int level;/* 0, 1, ... */
int n;
SparseMatrix A; /* n x n matrix */
SparseMatrix P;
SparseMatrix R;
Multilevel_Modularity_Clustering next;
Multilevel_Modularity_Clustering prev;
int delete_top_level_A;
int *matching; /* dimension n. matching[i] is the clustering assignment of node i */
real modularity;
real deg_total; /* total edge weights, including self-edges */
real *deg;/* dimension n. deg[i] equal to the sum of edge weights connected to vertex i. I.e., sum of row i */
int agglomerate_regardless;/* whether to agglomerate nodes even if this causes modularity reduction. This is used if we want to force
agglomeration so as to get less clusters
*/
};
enum {CLUSTERING_MODULARITY = 0, CLUSTERING_MQ};
/* find a clustering of vertices by maximize modularity
A: symmetric square matrix n x n. If real value, value will be used as edges weights, otherwise edge weights are considered as 1.
inplace: whether A can e modified. If true, A will be modified by removing diagonal.
maxcluster: used to specify the maximum number of cluster desired, e.g., maxcluster=10 means that a maximum of 10 clusters
. is desired. this may not always be realized, and modularity may be low when this is specified. Default: maxcluster = 0 (no limit)
use_value: whether to use the entry value, or treat edge weights as 1.
nclusters: on output the number of clusters
assignment: dimension n. Node i is assigned to cluster "assignment[i]". 0 <= assignment < nclusters.
. If *assignment = NULL on entry, it will be allocated. Otherwise used.
modularity: achieve modularity
*/
void modularity_clustering(SparseMatrix A, int inplace, int maxcluster, int use_value,
int *nclusters, int **assignment, real *modularity, int *flag);
#endif
|