File: position.c

package info (click to toggle)
graphviz 2.8-3%2Betch1
  • links: PTS
  • area: main
  • in suites: etch
  • size: 20,480 kB
  • ctags: 22,071
  • sloc: ansic: 163,260; cpp: 36,565; sh: 25,024; yacc: 2,358; tcl: 1,808; makefile: 1,745; cs: 805; perl: 801; ml: 649; awk: 160; lex: 153; python: 105; ruby: 32; php: 6
file content (1229 lines) | stat: -rw-r--r-- 32,847 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
/* $Id: position.c,v 1.8 2006/02/01 20:59:32 north Exp $ $Revision: 1.8 $ */
/* vim:set shiftwidth=4 ts=8: */

/**********************************************************
*      This software is part of the graphviz package      *
*                http://www.graphviz.org/                 *
*                                                         *
*            Copyright (c) 1994-2004 AT&T Corp.           *
*                and is licensed under the                *
*            Common Public License, Version 1.0           *
*                      by AT&T Corp.                      *
*                                                         *
*        Information and Software Systems Research        *
*              AT&T Research, Florham Park NJ             *
**********************************************************/


/*
 * position(g): set ND_coord_i(n) (x and y) for all nodes n of g, using GD_rank(g).
 * (the graph may be modified by merging certain edges with a common endpoint.)
 * the coordinates are computed by constructing and ranking an auxiliary graph.
 * then leaf nodes are inserted in the fast graph.  cluster boundary nodes are
 * created and correctly separated.
 */

#include "dot.h"

static int nsiter2(graph_t * g);
static void create_aux_edges(graph_t * g);
static void remove_aux_edges(graph_t * g);
static void set_xcoords(graph_t * g);
static void set_ycoords(graph_t * g);
static void set_aspect(graph_t * g);
static void expand_leaves(graph_t * g);
static void make_lrvn(graph_t * g);
static void contain_nodes(graph_t * g);
static int idealsize(graph_t * g, double);

#ifdef DEBUG
static void
dumpNS (graph_t * g)
{
    node_t* n = GD_nlist(g);
    elist el;
    edge_t* e;
    int i;

    while (n) {
	el = ND_out(n);
	for (i = 0; i < el.size; i++) {
	    e = el.list[i];
	    fprintf (stderr, "%s(%x) -> %s(%x) : %d\n", e->tail->name,e->tail, e->head->name, e->head,
		ED_minlen(e));
	}
	n = ND_next(n); 
    }
}
#endif

/* connectGraph:
 * When source and/or sink nodes are defined, it is possible that
 * after the auxiliary edges are added, the graph may still have 2 or
 * 3 components. To fix this, we put trivial constraints connecting the
 * first items of each rank.
 */
static void
connectGraph (graph_t* g)
{
    int i, j, r, found;
    node_t* tp;
    node_t* hp;
    node_t* sn;
    edge_t* e;
    rank_t* rp;

    for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
	rp = GD_rank(g)+r;
	found =FALSE;
        tp = NULL;
	for (i = 0; i < rp->n; i++) {
	    tp = rp->v[i];
	    if (ND_save_out(tp).list) {
        	for (j = 0; (e = ND_save_out(tp).list[j]); j++) {
		    if ((ND_rank(e->head) > r) || (ND_rank(e->tail) > r)) {
			found = TRUE;
			break;
		    }
        	}
		if (found) break;
	    }
	    if (ND_save_in(tp).list) {
        	for (j = 0; (e = ND_save_in(tp).list[j]); j++) {
		    if ((ND_rank(e->tail) > r) || (ND_rank(e->head) > r)) {
			found = TRUE;
			break;
		    }
        	}
		if (found) break;
	    }
	}
	if (found || !tp) continue;
	tp = rp->v[0];
	if (r < GD_maxrank(g)) hp = (rp+1)->v[0];
	else hp = (rp-1)->v[0];
	assert (hp);
	sn = virtual_node(g);
	ND_node_type(sn) = SLACKNODE;
	make_aux_edge(sn, tp, 0, 0);
	make_aux_edge(sn, hp, 0, 0);
	ND_rank(sn) = MIN(ND_rank(tp), ND_rank(hp));
    }
}

void dot_position(graph_t * g)
{
    if (GD_nlist(g) == NULL)
	return;			/* ignore empty graph */
    mark_lowclusters(g);	/* we could remove from splines.c now */
    set_ycoords(g);
    if (Concentrate)
	dot_concentrate(g);
    expand_leaves(g);
    if (flat_edges(g))
	set_ycoords(g);
    create_aux_edges(g);
    if (rank(g, 2, nsiter2(g))) { /* LR balance == 2 */
	connectGraph (g);
	assert(rank(g, 2, nsiter2(g)) == 0);
    }
    set_xcoords(g);
    set_aspect(g);
    remove_aux_edges(g);	/* must come after set_aspect since we now
				 * use GD_ln and GD_rn for bbox width.
				 */
}

static int nsiter2(graph_t * g)
{
    int maxiter = MAXINT;
    char *s;

    if ((s = agget(g, "nslimit")))
	maxiter = atof(s) * agnnodes(g);
    return maxiter;
}

static int go(node_t * u, node_t * v)
{
    int i;
    edge_t *e;

    if (u == v)
	return TRUE;
    for (i = 0; (e = ND_out(u).list[i]); i++) {
	if (go(e->head, v))
	    return TRUE;
    }
    return FALSE;
}

static int canreach(node_t * u, node_t * v)
{
    return go(u, v);
}

edge_t *make_aux_edge(node_t * u, node_t * v, int len, int wt)
{
    edge_t *e;

    e = NEW(edge_t);
    e->tail = u;
    e->head = v;
    ED_minlen(e) = len;
    ED_weight(e) = wt;
    fast_edge(e);
    return e;
}

static void allocate_aux_edges(graph_t * g)
{
    int i, j, n_in;
    node_t *n;

    /* allocate space for aux edge lists */
    for (n = GD_nlist(g); n; n = ND_next(n)) {
	ND_save_in(n) = ND_in(n);
	ND_save_out(n) = ND_out(n);
	for (i = 0; ND_out(n).list[i]; i++);
	for (j = 0; ND_in(n).list[j]; j++);
	n_in = i + j;
	alloc_elist(n_in + 3, ND_in(n));
	alloc_elist(3, ND_out(n));
    }
}

/* make_LR_constraints:
 */
static void 
make_LR_constraints(graph_t * g)
{
    int i, j, k;
    int sw;			/* self width */
    int m0, m1;
    int width, sep[2];
    int nodesep;      /* separation between nodes on same rank */
    edge_t *e, *e0, *e1, *ff;
    node_t *u, *v, *t0, *h0;
    rank_t *rank = GD_rank(g);

    /* Use smaller separation on odd ranks if g has edge labels */
    if (GD_has_labels(g) & EDGE_LABEL) {
	sep[0] = GD_nodesep(g);
	sep[1] = 5;
    }
    else {
	sep[1] = sep[0] = GD_nodesep(g);
    }
    /* make edges to constrain left-to-right ordering */
    for (i = GD_minrank(g); i <= GD_maxrank(g); i++) {
	int last;
	last = rank[i].v[0]->u.rank = 0;
	nodesep = sep[i & 1];
	for (j = 0; j < rank[i].n; j++) {
	    u = rank[i].v[j];
	    ND_mval(u) = ND_rw_i(u);	/* keep it somewhere safe */
	    if (ND_other(u).size > 0) {	/* compute self size */
		/* FIX: dot assumes all self-edges go to the right. This
                 * is no longer true, though makeSelfEdge still attempts to
                 * put as many as reasonable on the right. The dot code
                 * should be modified to allow a box reflecting the placement
                 * of all self-edges, and use that to reposition the nodes.
                 * Note that this would not only affect left and right
                 * positioning but may also affect interrank spacing.
                 */
		sw = 0;
		for (k = 0; (e = ND_other(u).list[k]); k++) {
		    if (e->tail == e->head) {
			sw += selfRightSpace (e);
		    }
		}
		ND_rw_i(u) += sw;	/* increment to include self edges */
	    }
	    v = rank[i].v[j + 1];
	    if (v) {
		width = ND_rw_i(u) + ND_lw_i(v) + nodesep;
		e0 = make_aux_edge(u, v, width, 0);
		last = (ND_rank(v) = last + width);
	    }

	    /* constraints from labels of flat edges on previous rank */
	    if ((e = (edge_t*)ND_alg(u))) {
		e0 = ND_save_out(u).list[0];
		e1 = ND_save_out(u).list[1];
		if (ND_order(e0->head) > ND_order(e1->head)) {
		    ff = e0;
		    e0 = e1;
		    e1 = ff;
		}
		m0 = (ED_minlen(e) * GD_nodesep(g)) / 2;
		m1 = m0 + ND_rw_i(e0->head) + ND_lw_i(e0->tail);
		/* these guards are needed because the flat edges
		 * work very poorly with cluster layout */
		if (canreach(e0->tail, e0->head) == FALSE)
		    make_aux_edge(e0->head, e0->tail, m1,
			ED_weight(e));
		m1 = m0 + ND_rw_i(e1->tail) + ND_lw_i(e1->head);
		if (canreach(e1->head, e1->tail) == FALSE)
		    make_aux_edge(e1->tail, e1->head, m1,
			ED_weight(e));
	    }

	    /* position flat edge endpoints */
	    for (k = 0; k < ND_flat_out(u).size; k++) {
		e = ND_flat_out(u).list[k];
		if (ND_order(e->tail) < ND_order(e->head)) {
		    t0 = e->tail;
		    h0 = e->head;
		} else {
		    t0 = e->head;
		    h0 = e->tail;
		}

		width = ND_rw_i(t0) + ND_lw_i(h0);
		m0 = ED_minlen(e) * GD_nodesep(g) + width;

		if ((e0 = find_fast_edge(t0, h0))) {
		    /* flat edge between adjacent neighbors 
                     * ED_dist contains the largest label width.
                     */
		    m0 = MAX(m0, width + GD_nodesep(g) + ROUND(ED_dist(e)));
		    ED_minlen(e0) = MAX(ED_minlen(e0), m0);
		}
		else if (!ED_label(e)) {
		    /* unlabeled flat edge between non-neighbors 
		     * ED_minlen(e) is max of ED_minlen of all equivalent 
                     * edges.
                     */
		    make_aux_edge(t0, h0, m0, ED_weight(e));
		}
		/* labeled flat edges between non-neighbors have already
                 * been constrained by the label above. 
                 */ 
	    }
	}
    }
}

/* make_edge_pairs: make virtual edge pairs corresponding to input edges */
static void make_edge_pairs(graph_t * g)
{
    int i, m0, m1;
    node_t *n, *sn;
    edge_t *e;

    for (n = GD_nlist(g); n; n = ND_next(n)) {
	if (ND_save_out(n).list)
	    for (i = 0; (e = ND_save_out(n).list[i]); i++) {
		sn = virtual_node(g);
		ND_node_type(sn) = SLACKNODE;
		m0 = (ED_head_port(e).p.x - ED_tail_port(e).p.x);
		if (m0 > 0)
		    m1 = 0;
		else {
		    m1 = -m0;
		    m0 = 0;
		}
#ifdef NOTDEF
/* was trying to improve LR balance */
		if ((ND_save_out(n).size % 2 == 0)
		    && (i == ND_save_out(n).size / 2 - 1)) {
		    node_t *u = ND_save_out(n).list[i]->head;
		    node_t *v = ND_save_out(n).list[i + 1]->head;
		    int width = ND_rw_i(u) + ND_lw_i(v) + GD_nodesep(g);
		    m0 = width / 2 - 1;
		}
#endif
		make_aux_edge(sn, e->tail, m0 + 1, ED_weight(e));
		make_aux_edge(sn, e->head, m1 + 1, ED_weight(e));
		ND_rank(sn) =
		    MIN(ND_rank(e->tail) - m0 - 1,
			ND_rank(e->head) - m1 - 1);
	    }
    }
}

static void contain_clustnodes(graph_t * g)
{
    int c;
    edge_t	*e;

    if (g != g->root) {
	contain_nodes(g);
	if ((e = find_fast_edge(GD_ln(g),GD_rn(g))))	/* maybe from lrvn()?*/
	    ED_weight(e) += 128;
	else
	    make_aux_edge(GD_ln(g), GD_rn(g), 1, 128);	/* clust compaction edge */
    }
    for (c = 1; c <= GD_n_cluster(g); c++)
	contain_clustnodes(GD_clust(g)[c]);
}

static int vnode_not_related_to(graph_t * g, node_t * v)
{
    edge_t *e;

    if (ND_node_type(v) != VIRTUAL)
	return FALSE;
    for (e = ND_save_out(v).list[0]; ED_to_orig(e); e = ED_to_orig(e));
    if (agcontains(g, e->tail))
	return FALSE;
    if (agcontains(g, e->head))
	return FALSE;
    return TRUE;
}

/* keepout_othernodes:
 * Guarantee nodes outside the cluster g are placed outside of it.
 * This is done by adding constraints to make sure such nodes have
 * a gap of CL_OFFSET from the left or right bounding box node ln or rn.
 * 
 * We could probably reduce some of these constraints by checking if
 * the node is in a cluster, since elsewhere we make constrain a
 * separate between clusters. Also, we should be able to skip the
 * first loop if g is the root graph.
 */
static void keepout_othernodes(graph_t * g)
{
    int i, c, r;
    node_t *u, *v;

    for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
	if (GD_rank(g)[r].n == 0)
	    continue;
	v = GD_rank(g)[r].v[0];
	if (v == NULL)
	    continue;
	for (i = ND_order(v) - 1; i >= 0; i--) {
	    u = GD_rank(g->root)[r].v[i];
	    /* can't use "is_a_vnode_of" because elists are swapped */
	    if ((ND_node_type(u) == NORMAL) || vnode_not_related_to(g, u)) {
		make_aux_edge(u, GD_ln(g), CL_OFFSET + ND_rw_i(u), 0);
		break;
	    }
	}
	for (i = ND_order(v) + GD_rank(g)[r].n; i < GD_rank(g->root)[r].n;
	     i++) {
	    u = ND_rank(g->root)[r].v[i];
	    if ((ND_node_type(u) == NORMAL) || vnode_not_related_to(g, u)) {
		make_aux_edge(GD_rn(g), u, CL_OFFSET + ND_lw_i(u), 0);
		break;
	    }
	}
    }

    for (c = 1; c <= GD_n_cluster(g); c++)
	keepout_othernodes(GD_clust(g)[c]);
}

/* contain_subclust:
 * Make sure boxes of subclusters of g are offset from the
 * box of g. This is done by a constraint between the left and
 * right bounding box nodes ln and rn of g and a subcluster.
 * The gap needs to include any left or right labels.
 */
static void contain_subclust(graph_t * g)
{
    int c;
    graph_t *subg;

    make_lrvn(g);
    for (c = 1; c <= GD_n_cluster(g); c++) {
	subg = GD_clust(g)[c];
	make_lrvn(subg);
	make_aux_edge(GD_ln(g), GD_ln(subg),
		      CL_OFFSET + GD_border(g)[LEFT_IX].x, 0);
	make_aux_edge(GD_rn(subg), GD_rn(g),
		      CL_OFFSET + GD_border(g)[RIGHT_IX].x, 0);
	contain_subclust(subg);
    }
}

/* separate_subclust:
 * Guarantee space between subcluster of g.
 * This is done by adding a constraint between the right bbox node rn
 * of the left cluster and the left bbox node ln of the right cluster.
 * This is only done if the two clusters overlap in some rank.
 */
static void separate_subclust(graph_t * g)
{
    int i, j;
    graph_t *low, *high;
    graph_t *left, *right;

    for (i = 1; i <= GD_n_cluster(g); i++)
	make_lrvn(GD_clust(g)[i]);
    for (i = 1; i <= GD_n_cluster(g); i++) {
	for (j = i + 1; j <= GD_n_cluster(g); j++) {
	    low = GD_clust(g)[i];
	    high = GD_clust(g)[j];
	    if (GD_minrank(low) > GD_minrank(high)) {
		graph_t *temp = low;
		low = high;
		high = temp;
	    }
	    if (GD_maxrank(low) < GD_minrank(high))
		continue;
	    if (ND_order(GD_rank(low)[GD_minrank(high)].v[0])
		< ND_order(GD_rank(high)[GD_minrank(high)].v[0])) {
		left = low;
		right = high;
	    } else {
		left = high;
		right = low;
	    }
	    make_aux_edge(GD_rn(left), GD_ln(right), CL_OFFSET, 0);
	}
	separate_subclust(GD_clust(g)[i]);
    }
}

/* pos_clusters: create constraints for:
 *	node containment in clusters,
 *	cluster containment in clusters,
 *	separation of sibling clusters.
 */
static void pos_clusters(graph_t * g)
{
    if (GD_n_cluster(g) > 0) {
	contain_clustnodes(g);
	keepout_othernodes(g);
	contain_subclust(g);
	separate_subclust(g);
    }
}

static void compress_graph(graph_t * g)
{
    double x;
    point p;

    if (GD_drawing(g)->ratio_kind != R_COMPRESS)
	return;
    p = GD_drawing(g)->size;
    if (p.x * p.y <= 1)
	return;
    contain_nodes(g);
    if (GD_flip(g) == FALSE)
	x = p.x;
    else
	x = p.y;
    make_aux_edge(GD_ln(g), GD_rn(g), (int) x, 1000);
}

static void create_aux_edges(graph_t * g)
{
    allocate_aux_edges(g);
    make_LR_constraints(g);
    make_edge_pairs(g);
    pos_clusters(g);
    compress_graph(g);
}

static void remove_aux_edges(graph_t * g)
{
    int i;
    node_t *n, *nnext, *nprev;
    edge_t *e;

    for (n = GD_nlist(g); n; n = ND_next(n)) {
	for (i = 0; (e = ND_out(n).list[i]); i++)
	    free(e);
	free_list(ND_out(n));
	free_list(ND_in(n));
	ND_out(n) = ND_save_out(n);
	ND_in(n) = ND_save_in(n);
    }
    /* cannot be merged with previous loop */
    nprev = NULL;
    for (n = GD_nlist(g); n; n = nnext) {
	nnext = ND_next(n);
	if (ND_node_type(n) == SLACKNODE) {
	    if (nprev)
		ND_next(nprev) = nnext;
	    else
		GD_nlist(g) = nnext;
	    free(n);
	} else
	    nprev = n;
    }
    GD_nlist(g)->u.prev = NULL;
}

/* set_xcoords:
 * Set x coords of nodes.
 */
static void 
set_xcoords(graph_t * g)
{
    int i, j;
    node_t *v;
    rank_t *rank = GD_rank(g);

    for (i = GD_minrank(g); i <= GD_maxrank(g); i++) {
	for (j = 0; j < rank[i].n; j++) {
	    v = rank[i].v[j];
	    ND_coord_i(v).x = ND_rank(v);
	    ND_rank(v) = i;
	}
    }
}

/* adjustEqual:
 * Expand cluster g vertically by delta, assuming ranks
 * are equally spaced. We first try to split delta evenly
 * using any available space at the top and bottom. If there
 * is not enough, we have to widen the space between the ranks.
 * We divide delta equally within the ranks of g plus its ht1
 * and ht2. To preserve equality of ranks, we add this space
 * between every pair of ranks.
 *
 * There is probably some way to add less than delta, by using
 * whatever available space there is at top and bottom, but for
 * now, trying to figure that out seems more trouble than it is worth.
 */
static void adjustEqual(graph_t * g, int delta)
{
    int r, avail, half, deltop, delbottom;
    graph_t *root = g->root;
    rank_t *rank = GD_rank(root);
    int maxr = GD_maxrank(g);
    int minr = GD_minrank(g);

    deltop = rank[minr].ht2 - GD_ht2(g);
    delbottom = rank[maxr].ht1 - GD_ht1(g);
    avail = deltop + delbottom;
    if (avail >= delta) {
 	half = (delta+1) / 2;
	if (deltop <= delbottom) {
	    if (half <= deltop) {
		GD_ht2(g) += half;
		GD_ht1(g) += (delta - half);
	    }
	    else {    
		GD_ht2(g) += deltop;
		GD_ht1(g) += (delta - deltop);
	    }
	}
	else {
	    if (half <= delbottom) {
		GD_ht1(g) += half;
		GD_ht2(g) += (delta - half);
	    }
	    else {    
		GD_ht1(g) += delbottom;
		GD_ht2(g) += (delta - delbottom);
	    }
	}
    }
    else {
	int gaps = maxr - minr + 2;
	int yoff = (delta + (gaps - 1)) / gaps;
	int y = yoff;
	for (r = GD_maxrank(root) - 1; r >= GD_minrank(root); r--) {
	    if (rank[r].n > 0)
		rank[r].v[0]->u.coord.y += y;
	    y += yoff;
	}
	GD_ht2(g) += yoff;
	GD_ht1(g) += yoff;
    }
}

/* adjustSimple:
 * Expand cluster height by delta, adding half to top
 * and half to bottom. If the bottom expansion exceeds the
 * ht1 of the rank, shift the ranks in the cluster up.
 * If the top expansion, including any shift from the bottom
 * expansion, exceeds to ht2 of the rank, shift the ranks above
 * the cluster up.
 */
static void adjustSimple(graph_t * g, int delta)
{
    int r, bottom, deltop, delbottom;
    graph_t *root = g->root;
    rank_t *rank = GD_rank(root);
    int maxr = GD_maxrank(g);
    int minr = GD_minrank(g);

    bottom = (delta+1) / 2;
    delbottom = GD_ht1(g) + bottom - rank[maxr].ht1;
    if (delbottom > 0) {
	for (r = maxr; r >= minr; r--) {
	    if (rank[r].n > 0)
		rank[r].v[0]->u.coord.y += delbottom;
 	}
	deltop = GD_ht2(g) + (delta-bottom) + delbottom - rank[minr].ht2;
    }
    else
	deltop = GD_ht2(g) + (delta-bottom) - rank[minr].ht2;
    if (deltop > 0) {
	for (r = minr-1; r >= GD_minrank(root); r--) {
	    if (rank[r].n > 0)
		rank[r].v[0]->u.coord.y += deltop;
	}
    }
    GD_ht2(g) += (delta - bottom);
    GD_ht1(g) += bottom;
}

/* adjustRanks:
 * Recursively adjust ranks to take into account
 * wide cluster labels when rankdir=LR.
 * We divide the extra space between the top and bottom.
 * Adjust the ht1 and ht2 values in the process.
 */
static void adjustRanks(graph_t * g, int equal)
{
    int lht;			/* label height */
    int rht;			/* height between top and bottom ranks */
    int delta, maxr, minr;
    int c, ht1, ht2;
    rank_t *rank = GD_rank(g->root);

    ht1 = GD_ht1(g);
    ht2 = GD_ht2(g);

    for (c = 1; c <= GD_n_cluster(g); c++) {
	graph_t *subg = GD_clust(g)[c];
	adjustRanks(subg, equal);
	if (GD_maxrank(subg) == GD_maxrank(g))
	    ht1 = MAX(ht1, GD_ht1(subg) + CL_OFFSET);
	if (GD_minrank(subg) == GD_minrank(g))
	    ht2 = MAX(ht2, GD_ht2(subg) + CL_OFFSET);
    }

    GD_ht1(g) = ht1;
    GD_ht2(g) = ht2;

    if ((g != g->root) && GD_label(g)) {
	lht = MAX(GD_border(g)[LEFT_IX].y, GD_border(g)[RIGHT_IX].y);
	maxr = GD_maxrank(g);
	minr = GD_minrank(g);
	rht =
	    ND_coord_i(rank[minr].v[0]).y - ND_coord_i(rank[maxr].v[0]).y;
	delta = lht - (rht + ht1 + ht2);
	if (delta > 0) {
	    if (equal)
		adjustEqual(g, delta);
	    else
		adjustSimple(g, delta);
	}
    }

    /* update the global ranks */
    if (g != g->root) {
	rank[GD_minrank(g)].ht2 = MAX(rank[GD_minrank(g)].ht2, GD_ht2(g));
	rank[GD_maxrank(g)].ht1 = MAX(rank[GD_maxrank(g)].ht1, GD_ht1(g));
    }
}

/* clust_ht:
 * recursively compute cluster ht requirements.  assumes GD_ht1(subg) and ht2
 * are computed from primitive nodes only.  updates ht1 and ht2 to reflect
 * cluster nesting and labels.  also maintains global rank ht1 and ht2.
 * Return true if some cluster has a label.
 */
static int clust_ht(Agraph_t * g)
{
    int c, ht1, ht2;
    graph_t *subg;
    rank_t *rank = GD_rank(g->root);
    int haveClustLabel = 0;

    ht1 = GD_ht1(g);
    ht2 = GD_ht2(g);

    /* account for sub-clusters */
    for (c = 1; c <= GD_n_cluster(g); c++) {
	subg = GD_clust(g)[c];
	haveClustLabel |= clust_ht(subg);
	if (GD_maxrank(subg) == GD_maxrank(g))
	    ht1 = MAX(ht1, GD_ht1(subg) + CL_OFFSET);
	if (GD_minrank(subg) == GD_minrank(g))
	    ht2 = MAX(ht2, GD_ht2(subg) + CL_OFFSET);
    }

    /* account for a possible cluster label in clusters */
    /* room for root graph label is handled in dotneato_postprocess */
    if ((g != g->root) && GD_label(g)) {
	haveClustLabel = 1;
	if (!GD_flip(g->root)) {
	    ht1 += GD_border(g)[BOTTOM_IX].y;
	    ht2 += GD_border(g)[TOP_IX].y;
	}
    }
    GD_ht1(g) = ht1;
    GD_ht2(g) = ht2;

    /* update the global ranks */
    if (g != g->root) {
	rank[GD_minrank(g)].ht2 = MAX(rank[GD_minrank(g)].ht2, ht2);
	rank[GD_maxrank(g)].ht1 = MAX(rank[GD_maxrank(g)].ht1, ht1);
    }

    return haveClustLabel;
}

/* set y coordinates of nodes, a rank at a time */
static void set_ycoords(graph_t * g)
{
    int i, j, r, ht2, maxht, delta, d0, d1;
    node_t *n;
    edge_t *e;
    rank_t *rank = GD_rank(g);
    graph_t *clust;
    int lbl;

    ht2 = maxht = 0;

    /* scan ranks for tallest nodes.  */
    for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
	for (i = 0; i < rank[r].n; i++) {
	    n = rank[r].v[i];

	    /* assumes symmetry, ht1 = ht2 */
	    ht2 = (ND_ht_i(n) + 1) / 2;


	    /* have to look for high self-edge labels, too */
	    if (ND_other(n).list)
		for (j = 0; (e = ND_other(n).list[j]); j++) {
		    if (e->tail == e->head) {
			if (ED_label(e))
			    ht2 = MAX(ht2, ED_label(e)->dimen.y / 2);
		    }
		}

	    /* update global rank ht */
	    if (rank[r].pht2 < ht2)
		rank[r].pht2 = rank[r].ht2 = ht2;
	    if (rank[r].pht1 < ht2)
		rank[r].pht1 = rank[r].ht1 = ht2;

	    /* update nearest enclosing cluster rank ht */
	    if ((clust = ND_clust(n))) {
		int yoff = (clust == g ? 0 : CL_OFFSET);
		if (ND_rank(n) == GD_minrank(clust))
		    GD_ht2(clust) = MAX(GD_ht2(clust), ht2 + yoff);
		if (ND_rank(n) == GD_maxrank(clust))
		    GD_ht1(clust) = MAX(GD_ht1(clust), ht2 + yoff);
	    }
	}
    }

    /* scan sub-clusters */
    lbl = clust_ht(g);

    /* make the initial assignment of ycoords to leftmost nodes by ranks */
    maxht = 0;
    r = GD_maxrank(g);
    rank[r].v[0]->u.coord.y = rank[r].ht1;
    while (--r >= GD_minrank(g)) {
	d0 = rank[r + 1].pht2 + rank[r].pht1 + GD_ranksep(g);	/* prim node sep */
	d1 = rank[r + 1].ht2 + rank[r].ht1 + CL_OFFSET;	/* cluster sep */
	delta = MAX(d0, d1);
	if (rank[r].n > 0)	/* this may reflect some problem */
	    rank[r].v[0]->u.coord.y = rank[r + 1].v[0]->u.coord.y + delta;
#ifdef DEBUG
	else
	    fprintf(stderr, "dot set_ycoords: rank %d is empty\n",
		    rank[r].n);
#endif
	maxht = MAX(maxht, delta);
    }

    /* re-assign if ranks are equally spaced */
    if (GD_exact_ranksep(g)) {
	for (r = GD_maxrank(g) - 1; r >= GD_minrank(g); r--)
	    if (rank[r].n > 0)	/* this may reflect the same problem :-() */
		rank[r].v[0]->u.coord.y =
		    rank[r + 1].v[0]->u.coord.y + maxht;
    }

    if (lbl && GD_flip(g))
	adjustRanks(g, GD_exact_ranksep(g));

    /* copy ycoord assignment from leftmost nodes to others */
    for (n = GD_nlist(g); n; n = ND_next(n))
	ND_coord_i(n).y = rank[ND_rank(n)].v[0]->u.coord.y;
}

/* dot_compute_bb:
 * Compute bounding box of g.
 * The x limits of clusters are given by the x positions of ln and rn.
 * This information is stored in the rank field, since it was calculated
 * using network simplex.
 * For the root graph, we don't enforce all the constraints on lr and 
 * rn, so we traverse the nodes and subclusters.
 */
static void dot_compute_bb(graph_t * g, graph_t * root)
{
    int r, c, x, offset;
    node_t *v;
    point LL, UR;

    if (g == g->root) {
	LL.x = MAXINT;
	UR.x = -MAXINT;
	for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
	    if (GD_rank(g)[r].n == 0)
		continue;
	    if ((v = GD_rank(g)[r].v[0]) == NULL)
		continue;
	    x = ND_coord_i(v).x - ND_lw_i(v);
	    LL.x = MIN(LL.x, x);
	    v = GD_rank(g)[r].v[GD_rank(g)[r].n - 1];
	    x = ND_coord_i(v).x + ND_rw_i(v);
	    UR.x = MAX(UR.x, x);
	}
	offset = CL_OFFSET;
	for (c = 1; c <= GD_n_cluster(g); c++) {
	    x = GD_clust(g)[c]->u.bb.LL.x - offset;
	    LL.x = MIN(LL.x, x);
	    x = GD_clust(g)[c]->u.bb.UR.x + offset;
	    UR.x = MAX(UR.x, x);
	}
    } else {
	LL.x = ND_rank(GD_ln(g));
	UR.x = ND_rank(GD_rn(g));
    }
    LL.y = ND_rank(root)[GD_maxrank(g)].v[0]->u.coord.y - GD_ht1(g);
    UR.y = ND_rank(root)[GD_minrank(g)].v[0]->u.coord.y + GD_ht2(g);
    GD_bb(g).LL = LL;
    GD_bb(g).UR = UR;
}

static void rec_bb(graph_t * g, graph_t * root)
{
    int c;
    for (c = 1; c <= GD_n_cluster(g); c++)
	rec_bb(GD_clust(g)[c], root);
    dot_compute_bb(g, root);
}

/* scale_bb:
 * Recursively rescale all bounding boxes using scale factors
 * xf and yf. We assume all the bboxes have been computed.
 */
static void scale_bb(graph_t * g, graph_t * root, double xf, double yf)
{
    int c;

    for (c = 1; c <= GD_n_cluster(g); c++)
	scale_bb(GD_clust(g)[c], root, xf, yf);
    GD_bb(g).LL.x *= xf;
    GD_bb(g).LL.y *= yf;
    GD_bb(g).UR.x *= xf;
    GD_bb(g).UR.y *= yf;
}

/* set_aspect:
 * Set bounding boxes and, if ratio is set, rescale graph.
 * Note that if some dimension shrinks, there may be problems
 * with labels.
 */
static void set_aspect(graph_t * g)
{
    double xf = 0.0, yf = 0.0, actual, desired;
    node_t *n;
    bool scale_it, filled;
    point sz;

    rec_bb(g, g);
    if ((GD_maxrank(g) > 0) && (GD_drawing(g)->ratio_kind)) {
	sz.x = GD_bb(g).UR.x - GD_bb(g).LL.x;
	sz.y = GD_bb(g).UR.y - GD_bb(g).LL.y;	/* normalize */
	if (GD_flip(g)) {
	    int t = sz.x;
	    sz.x = sz.y;
	    sz.y = t;
	}
	scale_it = TRUE;
	if (GD_drawing(g)->ratio_kind == R_AUTO)
	    filled = idealsize(g, .5);
	else
	    filled = (GD_drawing(g)->ratio_kind == R_FILL);
	if (filled) {
	    /* fill is weird because both X and Y can stretch */
	    if (GD_drawing(g)->size.x <= 0)
		scale_it = FALSE;
	    else {
		xf = (double) GD_drawing(g)->size.x / (double) sz.x;
		yf = (double) GD_drawing(g)->size.y / (double) sz.y;
		if ((xf < 1.0) || (yf < 1.0)) {
		    if (xf < yf) {
			yf = yf / xf;
			xf = 1.0;
		    } else {
			xf = xf / yf;
			yf = 1.0;
		    }
		}
	    }
	} else if (GD_drawing(g)->ratio_kind == R_EXPAND) {
	    if (GD_drawing(g)->size.x <= 0)
		scale_it = FALSE;
	    else {
		xf = (double) GD_drawing(g)->size.x /
		    (double) GD_bb(g).UR.x;
		yf = (double) GD_drawing(g)->size.y /
		    (double) GD_bb(g).UR.y;
		if ((xf > 1.0) && (yf > 1.0)) {
		    double scale = MIN(xf, yf);
		    xf = yf = scale;
		} else
		    scale_it = FALSE;
	    }
	} else if (GD_drawing(g)->ratio_kind == R_VALUE) {
	    desired = GD_drawing(g)->ratio;
	    actual = ((double) sz.y) / ((double) sz.x);
	    if (actual < desired) {
		yf = desired / actual;
		xf = 1.0;
	    } else {
		xf = actual / desired;
		yf = 1.0;
	    }
	} else
	    scale_it = FALSE;
	if (scale_it) {
	    if (GD_flip(g)) {
		double t = xf;
		xf = yf;
		yf = t;
	    }
	    for (n = GD_nlist(g); n; n = ND_next(n)) {
		ND_coord_i(n).x = ND_coord_i(n).x * xf;
		ND_coord_i(n).y = ND_coord_i(n).y * yf;
	    }
	    scale_bb(g, g, xf, yf);
	}
    }
}

static point resize_leaf(node_t * leaf, point lbound)
{
    dot_nodesize(leaf, GD_flip(leaf->graph));
    ND_coord_i(leaf).y = lbound.y;
    ND_coord_i(leaf).x = lbound.x + ND_lw_i(leaf);
    lbound.x =
	lbound.x + ND_lw_i(leaf) + ND_rw_i(leaf) + GD_nodesep(leaf->graph);
    return lbound;
}

static point place_leaf(node_t * leaf, point lbound, int order)
{
    node_t *leader;
    graph_t *g = leaf->graph;

    leader = UF_find(leaf);
    if (leaf != leader)
	fast_nodeapp(leader, leaf);
    ND_order(leaf) = order;
    ND_rank(leaf) = ND_rank(leader);
    GD_rank(g)[ND_rank(leaf)].v[ND_order(leaf)] = leaf;
    return resize_leaf(leaf, lbound);
}

/* make space for the leaf nodes of each rank */
static void make_leafslots(graph_t * g)
{
    int i, j, r;
    node_t *v;

    for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
	j = 0;
	for (i = 0; i < GD_rank(g)[r].n; i++) {
	    v = GD_rank(g)[r].v[i];
	    ND_order(v) = j;
	    if (ND_ranktype(v) == LEAFSET)
		j = j + ND_UF_size(v);
	    else
		j++;
	}
	if (j <= GD_rank(g)[r].n)
	    continue;
	GD_rank(g)[r].v = ALLOC(j + 1, GD_rank(g)[r].v, node_t *);
	for (i = GD_rank(g)[r].n - 1; i >= 0; i--) {
	    v = GD_rank(g)[r].v[i];
	    GD_rank(g)[r].v[ND_order(v)] = v;
	}
	GD_rank(g)[r].n = j;
	GD_rank(g)[r].v[j] = NULL;
    }
}

static void do_leaves(graph_t * g, node_t * leader)
{
    int j;
    point lbound;
    node_t *n;
    edge_t *e;

    if (ND_UF_size(leader) <= 1)
	return;
    lbound.x = ND_coord_i(leader).x - ND_lw_i(leader);
    lbound.y = ND_coord_i(leader).y;
    lbound = resize_leaf(leader, lbound);
    if (ND_out(leader).size > 0) {	/* in-edge leaves */
	n = ND_out(leader).list[0]->head;
	j = ND_order(leader) + 1;
	for (e = agfstin(g, n); e; e = agnxtin(g, e)) {
	    if ((e->tail != leader) && (UF_find(e->tail) == leader)) {
		lbound = place_leaf(e->tail, lbound, j++);
		unmerge_oneway(e);
		elist_append(e, ND_in(e->head));
	    }
	}
    } else {			/* out edge leaves */
	n = ND_in(leader).list[0]->tail;
	j = ND_order(leader) + 1;
	for (e = agfstout(g, n); e; e = agnxtout(g, e)) {
	    if ((e->head != leader) && (UF_find(e->head) == leader)) {
		lbound = place_leaf(e->head, lbound, j++);
		unmerge_oneway(e);
		elist_append(e, ND_out(e->tail));
	    }
	}
    }
}

int ports_eq(edge_t * e, edge_t * f)
{
    return ((ED_head_port(e).defined == ED_head_port(f).defined)
	    && (((ED_head_port(e).p.x == ED_head_port(f).p.x) &&
		 (ED_head_port(e).p.y == ED_head_port(f).p.y))
		|| (ED_head_port(e).defined == FALSE))
	    && (((ED_tail_port(e).p.x == ED_tail_port(f).p.x) &&
		 (ED_tail_port(e).p.y == ED_tail_port(f).p.y))
		|| (ED_tail_port(e).defined == FALSE))
	);
}

static void expand_leaves(graph_t * g)
{
    int i, d;
    node_t *n;
    edge_t *e, *f;

    make_leafslots(g);
    for (n = GD_nlist(g); n; n = ND_next(n)) {
	if (ND_inleaf(n))
	    do_leaves(g, ND_inleaf(n));
	if (ND_outleaf(n))
	    do_leaves(g, ND_outleaf(n));
	if (ND_other(n).list)
	    for (i = 0; (e = ND_other(n).list[i]); i++) {
		if ((d = ND_rank(e->head) - ND_rank(e->head)) == 0)
		    continue;
		f = ED_to_orig(e);
		if (ports_eq(e, f) == FALSE) {
		    zapinlist(&(ND_other(n)), e);
		    if (d == 1)
			fast_edge(e);
		    /*else unitize(e); ### */
		    i--;
		}
	    }
    }
}

/* make_lrvn:
 * Add left and right slacknodes to a cluster which
 * are used in the LP to constrain nodes not in g but
 * sharing its ranks to be to the left or right of g
 * by a specified amount.
 * The slacknodes ln and rn give the x position of the
 * left and right side of the cluster's bounding box. In
 * particular, any cluster labels on the left or right side
 * are inside.
 * If a cluster has a label, and we have rankdir!=LR, we make
 * sure the cluster is wide enough for the label. Note that
 * if the label is wider than the cluster, the nodes in the
 * cluster may not be centered.
 */
static void make_lrvn(graph_t * g)
{
    node_t *ln, *rn;

    if (GD_ln(g))
	return;
    ln = virtual_node(g->root);
    ND_node_type(ln) = SLACKNODE;
    rn = virtual_node(g->root);
    ND_node_type(rn) = SLACKNODE;

    if (GD_label(g) && (g != g->root) && !GD_flip(g->root)) {
	int w = MAX(GD_border(g)[BOTTOM_IX].x, GD_border(g)[TOP_IX].x);
	make_aux_edge(ln, rn, w, 0);
    }

    GD_ln(g) = ln;
    GD_rn(g) = rn;
}

/* contain_nodes: 
 * make left and right bounding box virtual nodes ln and rn
 * constrain interior nodes
 */
static void contain_nodes(graph_t * g)
{
    int r;
    node_t *ln, *rn, *v;

    make_lrvn(g);
    ln = GD_ln(g);
    rn = GD_rn(g);
    for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
	if (GD_rank(g)[r].n == 0)
	    continue;
	v = GD_rank(g)[r].v[0];
	if (v == NULL) {
	    agerr(AGERR, "contain_nodes clust %s rank %d missing node\n",
		  g->name, r);
	    continue;
	}
	make_aux_edge(ln, v,
		      ND_lw_i(v) + CL_OFFSET + GD_border(g)[LEFT_IX].x, 0);
	v = GD_rank(g)[r].v[GD_rank(g)[r].n - 1];
	make_aux_edge(v, rn,
		      ND_rw_i(v) + CL_OFFSET + GD_border(g)[RIGHT_IX].x,
		      0);
    }
}

/* idealsize:
 * set g->drawing->size to a reasonable default.
 * returns a bool to indicate if drawing is to
 * be scaled and filled */
static int idealsize(graph_t * g, double minallowed)
{
    double xf, yf, f, R;
    point b, relpage, margin;

    /* try for one page */
    relpage = GD_drawing(g)->page;
    if (relpage.x == 0)
	return FALSE;		/* no page was specified */
    margin = GD_drawing(g)->margin;
    relpage = sub_points(relpage, margin);
    relpage = sub_points(relpage, margin);
    b.x = GD_bb(g).UR.x;
    b.y = GD_bb(g).UR.y;
    xf = (double) relpage.x / b.x;
    yf = (double) relpage.y / b.y;
    if ((xf >= 1.0) && (yf >= 1.0))
	return FALSE;		/* fits on one page */

    f = MIN(xf, yf);
    xf = yf = MAX(f, minallowed);

    R = ceil((xf * b.x) / relpage.x);
    xf = ((R * relpage.x) / b.x);
    R = ceil((yf * b.y) / relpage.y);
    yf = ((R * relpage.y) / b.y);
    GD_drawing(g)->size.x = b.x * xf;
    GD_drawing(g)->size.y = b.y * yf;
    return TRUE;
}