File: trans.c

package info (click to toggle)
grass 6.0.2-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 40,044 kB
  • ctags: 31,303
  • sloc: ansic: 321,125; tcl: 25,676; sh: 11,176; cpp: 10,098; makefile: 5,025; fortran: 1,846; yacc: 493; lex: 462; perl: 133; sed: 1
file content (295 lines) | stat: -rw-r--r-- 6,048 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/*
* $Id: trans.c,v 2.0 2004/11/09 12:32:35 bernhard Exp $
*/

/* NOTE: This file should be REMOVED and any calls to the functions in this
** file should be replaced with appropriate OpenGL calls.
*/

/*
**  Written by Dave Gerdes Jan 1990
**  Copyright  Dave Gerdes 1990    All rights reserved
**
**
**  Matrix Transformation library.
**  
**   P_pushmatrix ()
**   P_popmatrix ()
**   P_scale ()		
**   P_translate ()
**   P_rot ()
**   P_rotate ()
**   P_transform ()      transform array of vectors using current T matrix
**      		 This routine should be available in GL!
**
**  Arguments are same as GL counterparts
**
**  I threw this code together in January at the beginning of this
**  class.  I was still learning about GL at the time.
**  There are many places where the code could be improved.
**
*/
#include <stdio.h>
#include <math.h>

#include "gstypes.h"

#define MAX_STACK 20

static float c_stack[MAX_STACK][4][4];	/* matrix stack */
static int stack_ptr = -1;	/* index of curr matrix depth */
static float d[4][4];		/* tmp matrix */

#define NPI  3.14159265358979323846

/*
**  Current transformation matrix
*/
static float trans_mat[4][4] = {
    {1., 0., 0., 0.},
    {0., 1., 0., 0.},
    {0., 0., 1., 0.},
    {0., 0., 0., 1.}
};

static float ident[4][4] = {
    {1., 0., 0., 0.},
    {0., 1., 0., 0.},
    {0., 0., 1., 0.},
    {0., 0., 0., 1.}
};

/************************************************************************/
void P_scale(float x, float y, float z)
{
    d[0][0] = x;
    d[0][1] = 0.;
    d[0][2] = 0.;
    d[0][3] = 0.;
    d[1][0] = 0.;
    d[1][1] = y;
    d[1][2] = 0.;
    d[1][3] = 0.;
    d[2][0] = 0.;
    d[2][1] = 0.;
    d[2][2] = z;
    d[2][3] = 0.;
    d[3][0] = 0.;
    d[3][1] = 0.;
    d[3][2] = 0.;
    d[3][3] = 1.;

    /*
       **  will write into 1 down on matrix stack
       **  and then the popmatrix() will place it as the current T matrix
     */
    P_pushmatrix();
    P__transform(4, d, c_stack[stack_ptr], trans_mat);
    P_popmatrix();

    return;
}

/************************************************************************/
void P_translate(float x, float y, float z)
{
    d[0][0] = 1.;
    d[0][1] = 0.;
    d[0][2] = 0.;
    d[0][3] = 0.;
    d[1][0] = 0.;
    d[1][1] = 1.;
    d[1][2] = 0.;
    d[1][3] = 0.;
    d[2][0] = 0.;
    d[2][1] = 0.;
    d[2][2] = 1.;
    d[2][3] = 0.;
    d[3][0] = x;
    d[3][1] = y;
    d[3][2] = z;
    d[3][3] = 1.;

    P_pushmatrix();
    P__transform(4, d, c_stack[stack_ptr], trans_mat);
    P_popmatrix();

    return;
}

/************************************************************************/
/*
**   multiply 'in' matrix (homogenous coordinate generally) by
**   the current transformation matrix, placing the result in 'out'
**
**       [in][trans_mat] => [out]
*/
void P_transform(int num_vert, float (*in)[4], float (*out)[4])
{
    P__transform(num_vert, in, out, trans_mat);

    return;
}

/************************************************************************/
void P__transform(int num_vert, float (*in)[4], float (*out)[4],
		  float (*c)[4])
{
    register int k, j, i;

    for (i = 0; i < num_vert; i++) {
	for (j = 0; j < 4; j++) {
	    out[i][j] = 0.;

	    for (k = 0; k < 4; k++) {
		out[i][j] += in[i][k] * c[k][j];
	    }
	}
    }

    return;
}

/************************************************************************/
void P_matrix_copy(float (*from)[4], float (*to)[4], int size)
{
    register int i, j;

    for (i = 0; i < size; i++) {
	for (j = 0; j < 4; j++) {
	    to[i][j] = from[i][j];
	}
    }

    return;
}

/************************************************************************/
/*
** push current transformation matrix onto matrix stack
*/
int P_pushmatrix(void)
{
    if (stack_ptr >= MAX_STACK) {
	fprintf(stderr, "Out of matrix stack space\n");

	return (-1);
    }

    stack_ptr++;
    P_matrix_copy(trans_mat, c_stack[stack_ptr], 4);

    return (0);
}

/************************************************************************/
/*
** pop top of matrix stack, placing it into the current transformation matrix
*/
int P_popmatrix(void)
{
    if (stack_ptr < 0) {
	fprintf(stderr, "Tried to pop an empty stack\n");

	return (-1);
    }

    P_matrix_copy(c_stack[stack_ptr], trans_mat, 4);
    stack_ptr--;

    return (0);
}

/************************************************************************/
/*  angle is expressed in tenths of degrees */
void P_rotate(int angle, char axis)
{
    P_rot(angle / 10., axis);

    return;
}

/************************************************************************/
void P_rot(float angle, char axis)
{
    double theta;

    P_matrix_copy(ident, d, 4);

    theta = (NPI / 180.) * angle;	/* convert to radians */

    /* optimize to handle rotations of mutliples of 90 deg */
    switch (axis) {
    case 'X':
    case 'x':

	d[1][1] = cos(theta);
	d[1][2] = sin(theta);
	d[2][1] = -sin(theta);
	d[2][2] = cos(theta);

	break;
    case 'Y':
    case 'y':

	d[0][0] = cos(theta);
	d[0][2] = -sin(theta);
	d[2][0] = sin(theta);
	d[2][2] = cos(theta);
	break;
    case 'Z':
    case 'z':

	d[0][0] = cos(theta);
	d[0][1] = sin(theta);
	d[1][0] = -sin(theta);
	d[1][1] = cos(theta);

	break;
    }

    P_pushmatrix();
    P__transform(4, d, c_stack[stack_ptr], trans_mat);
    P_popmatrix();

    return;
}

/************************************************************************/
/*  angle is expressed in radians  */
void P_rad_rotate(double theta, char axis)
{

    P_matrix_copy(ident, d, 4);

    /* optimize to handle rotations of mutliples of 90 deg */
    switch (axis) {
    case 'x':
	d[1][1] = cos(theta);
	d[1][2] = sin(theta);
	d[2][1] = -sin(theta);
	d[2][2] = cos(theta);

	break;

    case 'y':
	d[0][0] = cos(theta);
	d[0][2] = -sin(theta);
	d[2][0] = sin(theta);
	d[2][2] = cos(theta);

	break;

    case 'z':
	d[0][0] = cos(theta);
	d[0][1] = sin(theta);
	d[1][0] = -sin(theta);
	d[1][1] = cos(theta);

	break;
    }

    P_pushmatrix();
    P__transform(4, d, c_stack[stack_ptr], trans_mat);
    P_popmatrix();
}