File: prune.c

package info (click to toggle)
grass 6.0.2-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 40,044 kB
  • ctags: 31,303
  • sloc: ansic: 321,125; tcl: 25,676; sh: 11,176; cpp: 10,098; makefile: 5,025; fortran: 1,846; yacc: 493; lex: 462; perl: 133; sed: 1
file content (254 lines) | stat: -rw-r--r-- 7,167 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
* $Id: prune.c,v 1.3 2003/09/11 16:12:48 markus Exp $
*
****************************************************************************
*
* MODULE:       Vector library 
*   	    	
* AUTHOR(S):    Original author CERL, probably Dave Gerdes.
*               Update to GRASS 5.7 Radim Blazek.
*
* PURPOSE:      Lower level functions for reading/writing/manipulating vectors.
*
* COPYRIGHT:    (C) 2001 by the GRASS Development Team
*
*               This program is free software under the GNU General Public
*   	    	License (>=v2). Read the file COPYING that comes with GRASS
*   	    	for details.
*
*****************************************************************************/
/*  @(#)prune.c 3.0  2/19/98  */
/* by Michel Wurtz for GRASS 4.2.1 - <mw@engees.u-strasbg.fr>
 * This is a complete rewriting of the previous dig_prune subroutine.
 * The goal remains : it resamples a dense string of x,y coordinates to
 * produce a set of coordinates that approaches hand digitizing.
 * That is, the density of points is very low on straight lines, and
 * highest on tight curves.
 *
 * The algorithm used is very different, and based on the suppression
 * of intermediate points, when they are closer than thresh from a
 * moving straight line.  
 *
 * The distance between a point M                ->   ->
 * and a AD segment is given                  || AM ^ AD ||
 * by the following formula :            d = ---------------
 *                                                  ->
 *                                               || AD ||
 *
 *                     ->   ->                             ->
 * When comparing   || AM ^ AD ||   and    t = thresh * || AD ||
 *
 *                     ->   ->       ->   ->
 * we call  sqdist = | AM ^ AD | = | OA ^ OM + beta | 
 *
 *                  ->   ->
 *  with     beta = OA ^ OD 
 *
 * The implementation is based on an old integer routine (optimised
 * for machine without math coprocessor), itself inspired by a PL/1
 * routine written after a fortran programm on some prehistoric
 * hardware (IBM 360 probably). Yeah, I'm older than before :-)
 *
 * The algorithm used doesn't eliminate "duplicate" points (following
 * points with same coordinates).  So we should clean the set of points
 * before.  As a side effect, dig_prune can be called with a null thresh
 * value.  In this case only cleaning is made. The command v.prune is to
 * be modified accordingly.
 *
 * Another important note : Don't try too big threshold, this subroutine
 * may produce strange things with some pattern (mainly loops, or crossing
 * of level curves): Try the set { 0,0 -5,0 -4,10 -6,20 -5,30 -5,20 10,10}
 * with a thershold of 5. This isn't a programmation, but a conceptal bug ;-)
 *
 * Input parameters :
 * points->x, ->y   - double precision sets of coordinates.
 * points->n_points - the total number of points in the set.
 * thresh           - the distance that a string must wander from a straight
 *                    line before another point is selected.
 *
 * Value returned : - the final number of points in the pruned set.
 */

#include <stdio.h>
#include "Vect.h"
#include <math.h>

int 
dig_prune (struct line_pnts *points, double thresh)
{
  double *ox, *oy, *nx, *ny;
  double cur_x, cur_y;
  int o_num;
  int n_num;			/* points left */
  int at_num;
  int ij,			/* position of farest point */
    ja, jd, i, j, k, n, inu, it;	/* indicateur de parcours du segment */

  double sqdist;		/* square of distance */
  double fpdist;		/* square of distance from chord to farest point */
  double t, beta;		/* as explained in commented algorithm  */

  double dx, dy;		/* temporary variables */

  double sx[18], sy[18];	/* temporary table for processing points */
  int nt[17], nu[17];

  /* nothing to do if less than 3 points ! */
  if (points->n_points <= 2)
    return (points->n_points);

  ox = points->x;
  oy = points->y;
  nx = points->x;
  ny = points->y;

  o_num = points->n_points;
  n_num = 0;

  /* Eliminate duplicate points */

  at_num = 0;
  while (at_num < o_num)
    {
      if (nx != ox)
	{
	  *nx = *ox++;
	  *ny = *oy++;
	}
      else
	{
	  ox++;
	  oy++;
	}
      cur_x = *nx++;
      cur_y = *ny++;
      n_num++;
      at_num++;

      while (*ox == cur_x && *oy == cur_y)
	{
	  if (at_num == o_num)
	    break;
	  at_num++;
	  ox++;
	  oy++;
	}
    }

  /*  Return if less than 3 points left.  When all points are identical,
   *  output only one point (is this valid for calling function ?) */

  if (n_num <= 2)
    return n_num;

  if (thresh == 0.0)		/* Thresh is null, nothing more to do */
    return n_num;

  /* some (re)initialisations */

  o_num = n_num;
  ox = points->x;
  oy = points->y;

  sx[0] = ox[0];
  sy[0] = oy[0];
  n_num = 1;
  at_num = 2;
  k = 1;
  sx[1] = ox[1];
  sy[1] = oy[1];
  nu[0] = 9;
  nu[1] = 0;
  inu = 2;

  while (at_num < o_num)
    {				/* Position of last point to be    */
      if (o_num - at_num > 14)	/* processed in a segment.         */
	n = at_num + 9;		/* There must be at least 6 points */
      else			/* in the current segment.         */
	n = o_num;
      sx[0] = sx[nu[1]];	/* Last point written becomes      */
      sy[0] = sy[nu[1]];	/* first of new segment.           */
      if (inu > 1)		/* One point was keeped in the     */
	{			/* previous segment :              */
	  sx[1] = sx[k];	/* Last point of the old segment   */
	  sy[1] = sy[k];	/* becomes second of the new one.  */
	  k = 1;
	}
      else
	{			/* No point keeped : farest point  */
	  sx[1] = sx[ij];	/* is loaded in second position    */
	  sy[1] = sy[ij];	/* to avoid cutting lines with     */
	  sx[2] = sx[k];	/* small cuvature.                 */
	  sy[2] = sy[k];	/* First point of previous segment */
	  k = 2;		/* becomes the third one.          */
	}
      /* Loding remaining points         */
      for (j = at_num; j < n; j++)
	{
	  k++;
	  sx[k] = ox[j];
	  sy[k] = oy[j];
	}

      jd = 0;
      ja = k;
      nt[0] = 0;
      nu[0] = k;
      inu = 0;
      it = 0;
      for (;;)
	{
	  if (jd + 1 == ja)	/* Exploration of segment terminated */
	    goto endseg;

	  dx = sx[ja] - sx[jd];
	  dy = sy[ja] - sy[jd];
	  t = thresh * hypot (dx, dy);
	  beta = sx[jd] * sy[ja] - sx[ja] * sy[jd];

	  /* Initializing ij, we don't take 0 as initial value
	     ** for fpdist, in case ja and jd are the same
	   */
	  ij = (ja + jd + 1) >> 1;
	  fpdist = 1.0;

	  for (j = jd + 1; j < ja; j++)
	    {
	      sqdist = fabs (dx * sy[j] - dy * sx[j] + beta);
	      if (sqdist > fpdist)
		{
		  ij = j;
		  fpdist = sqdist;
		}
	    }
	  if (fpdist > t)	/* We found a point to be keeped    */
	    {			/* Restart from farest point        */
	      jd = ij;
	      nt[++it] = ij;
	    }
	  else
	  endseg:{		/* All points are inside threshold. */
	      /* Former start becomes new end     */
	      nu[++inu] = jd;
	      if (--it < 0)
		break;
	      ja = jd;
	      jd = nt[it];
	    }
	}
      for (j = inu - 1; j > 0; j--)
	{			/* Copy of segment's keeped points  */
	  i = nu[j];
	  ox[n_num] = sx[i];
	  oy[n_num] = sy[i];
	  n_num++;
	}
      at_num = n;
    }
  i = nu[0];
  ox[n_num] = sx[i];
  oy[n_num] = sy[i];
  n_num++;
  return n_num;
}