1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/****************************************************************************
* MODULE: R-Tree library
*
* AUTHOR(S): Antonin Guttman - original code
* Daniel Green (green@superliminal.com) - major clean-up
* and implementation of bounding spheres
*
* PURPOSE: Multidimensional index
*
* COPYRIGHT: (C) 2001 by the GRASS Development Team
*
* This program is free software under the GNU General Public
* License (>=v2). Read the file COPYING that comes with GRASS
* for details.
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "assert.h"
#include "index.h"
#include "card.h"
/* Make a new index, empty. Consists of a single node. */
struct Node * RTreeNewIndex(void)
{
struct Node *x;
x = RTreeNewNode();
x->level = 0; /* leaf */
return x;
}
/*
* Search in an index tree or subtree for all data retangles that
* overlap the argument rectangle.
* Return the number of qualifying data rects.
*/
int RTreeSearch(struct Node *N, struct Rect *R, SearchHitCallback shcb, void* cbarg)
{
register struct Node *n = N;
register struct Rect *r = R; /* NOTE: Suspected bug was R sent in as Node* and cast to Rect* here.*/
/* Fix not yet tested. */
register int hitCount = 0;
register int i;
assert(n);
assert(n->level >= 0);
assert(r);
if (n->level > 0) /* this is an internal node in the tree */
{
for (i=0; i<NODECARD; i++)
if (n->branch[i].child &&
RTreeOverlap(r,&n->branch[i].rect))
{
hitCount += RTreeSearch(n->branch[i].child, R, shcb, cbarg);
}
}
else /* this is a leaf node */
{
for (i=0; i<LEAFCARD; i++)
if (n->branch[i].child &&
RTreeOverlap(r,&n->branch[i].rect))
{
hitCount++;
if(shcb) /* call the user-provided callback */
if( ! shcb((int)n->branch[i].child, cbarg))
return hitCount; /* callback wants to terminate search early */
}
}
return hitCount;
}
/*
* Inserts a new data rectangle into the index structure.
* Recursively descends tree, propagates splits back up.
* Returns 0 if node was not split. Old node updated.
* If node was split, returns 1 and sets the pointer pointed to by
* new_node to point to the new node. Old node updated to become one of two.
* The level argument specifies the number of steps up from the leaf
* level to insert; e.g. a data rectangle goes in at level = 0.
*/
static int RTreeInsertRect2(struct Rect *r,
int tid, struct Node *n, struct Node **new_node, int level)
{
/*
register struct Rect *r = R;
register int tid = Tid;
register struct Node *n = N, **new_node = New_node;
register int level = Level;
*/
register int i;
struct Branch b;
struct Node *n2;
assert(r && n && new_node);
assert(level >= 0 && level <= n->level);
/* Still above level for insertion, go down tree recursively */
if (n->level > level)
{
i = RTreePickBranch(r, n);
if (!RTreeInsertRect2(r, tid, n->branch[i].child, &n2, level))
{
/* child was not split */
n->branch[i].rect =
RTreeCombineRect(r,&(n->branch[i].rect));
return 0;
}
else /* child was split */
{
n->branch[i].rect = RTreeNodeCover(n->branch[i].child);
b.child = n2;
b.rect = RTreeNodeCover(n2);
return RTreeAddBranch(&b, n, new_node);
}
}
/* Have reached level for insertion. Add rect, split if necessary */
else if (n->level == level)
{
b.rect = *r;
b.child = (struct Node *) tid;
/* child field of leaves contains tid of data record */
return RTreeAddBranch(&b, n, new_node);
}
else
{
/* Not supposed to happen */
assert (FALSE);
return 0;
}
}
/*
* Insert a data rectangle into an index structure.
* RTreeInsertRect provides for splitting the root;
* returns 1 if root was split, 0 if it was not.
* The level argument specifies the number of steps up from the leaf
* level to insert; e.g. a data rectangle goes in at level = 0.
* RTreeInsertRect2 does the recursion.
*/
int RTreeInsertRect(struct Rect *R, int Tid, struct Node **Root, int Level)
{
register struct Rect *r = R;
register int tid = Tid;
register struct Node **root = Root;
register int level = Level;
register int i;
register struct Node *newroot;
struct Node *newnode;
struct Branch b;
int result;
assert(r && root);
assert(level >= 0 && level <= (*root)->level);
for (i=0; i<NUMDIMS; i++) {
assert(r->boundary[i] <= r->boundary[NUMDIMS+i]);
}
if (RTreeInsertRect2(r, tid, *root, &newnode, level)) /* root split */
{
newroot = RTreeNewNode(); /* grow a new root, & tree taller */
newroot->level = (*root)->level + 1;
b.rect = RTreeNodeCover(*root);
b.child = *root;
RTreeAddBranch(&b, newroot, NULL);
b.rect = RTreeNodeCover(newnode);
b.child = newnode;
RTreeAddBranch(&b, newroot, NULL);
*root = newroot;
result = 1;
}
else
result = 0;
return result;
}
/*
* Allocate space for a node in the list used in DeletRect to
* store Nodes that are too empty.
*/
static struct ListNode * RTreeNewListNode(void)
{
return (struct ListNode *) malloc(sizeof(struct ListNode));
/* return new ListNode; */
}
static void RTreeFreeListNode(struct ListNode *p)
{
free(p);
/* delete(p); */
}
/*
* Add a node to the reinsertion list. All its branches will later
* be reinserted into the index structure.
*/
static void RTreeReInsert(struct Node *n, struct ListNode **ee)
{
register struct ListNode *l;
l = RTreeNewListNode();
l->node = n;
l->next = *ee;
*ee = l;
}
/*
* Delete a rectangle from non-root part of an index structure.
* Called by RTreeDeleteRect. Descends tree recursively,
* merges branches on the way back up.
* Returns 1 if record not found, 0 if success.
*/
static int
RTreeDeleteRect2(struct Rect *R, int Tid, struct Node *N, struct ListNode **Ee)
{
register struct Rect *r = R;
register int tid = Tid;
register struct Node *n = N;
register struct ListNode **ee = Ee;
register int i;
assert(r && n && ee);
assert(tid >= 0);
assert(n->level >= 0);
if (n->level > 0) /* not a leaf node */
{
for (i = 0; i < NODECARD; i++)
{
if (n->branch[i].child && RTreeOverlap(r, &(n->branch[i].rect)))
{
if (!RTreeDeleteRect2(r, tid, n->branch[i].child, ee))
{
if (n->branch[i].child->count >= MinNodeFill) {
n->branch[i].rect = RTreeNodeCover(
n->branch[i].child);
}
else
{
/* not enough entries in child, eliminate child node */
RTreeReInsert(n->branch[i].child, ee);
RTreeDisconnectBranch(n, i);
}
return 0;
}
}
}
return 1;
}
else /* a leaf node */
{
for (i = 0; i < LEAFCARD; i++)
{
if (n->branch[i].child &&
n->branch[i].child == (struct Node *) tid)
{
RTreeDisconnectBranch(n, i);
return 0;
}
}
return 1;
}
}
/*
* Delete a data rectangle from an index structure.
* Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
* Returns 1 if record not found, 0 if success.
* RTreeDeleteRect provides for eliminating the root.
*/
int RTreeDeleteRect(struct Rect *R, int Tid, struct Node**Nn)
{
register struct Rect *r = R;
register int tid = Tid;
register struct Node **nn = Nn;
register int i;
register struct Node *tmp_nptr;
struct ListNode *reInsertList = NULL;
register struct ListNode *e;
assert(r && nn);
assert(*nn);
assert(tid >= 0);
if (!RTreeDeleteRect2(r, tid, *nn, &reInsertList))
{
/* found and deleted a data item */
/* reinsert any branches from eliminated nodes */
while (reInsertList)
{
tmp_nptr = reInsertList->node;
for (i = 0; i < MAXKIDS(tmp_nptr); i++)
{
if (tmp_nptr->branch[i].child)
{
RTreeInsertRect(
&(tmp_nptr->branch[i].rect),
(int)tmp_nptr->branch[i].child,
nn,
tmp_nptr->level);
}
}
e = reInsertList;
reInsertList = reInsertList->next;
RTreeFreeNode(e->node);
RTreeFreeListNode(e);
}
/* check for redundant root (not leaf, 1 child) and eliminate */
if ((*nn)->count == 1 && (*nn)->level > 0)
{
for (i = 0; i < NODECARD; i++)
{
tmp_nptr = (*nn)->branch[i].child;
if(tmp_nptr)
break;
}
assert(tmp_nptr);
RTreeFreeNode(*nn);
*nn = tmp_nptr;
}
return 0;
}
else
{
return 1;
}
}
|