File: index.c

package info (click to toggle)
grass 6.0.2-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 40,044 kB
  • ctags: 31,303
  • sloc: ansic: 321,125; tcl: 25,676; sh: 11,176; cpp: 10,098; makefile: 5,025; fortran: 1,846; yacc: 493; lex: 462; perl: 133; sed: 1
file content (332 lines) | stat: -rw-r--r-- 8,320 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/****************************************************************************
* MODULE:       R-Tree library 
*              
* AUTHOR(S):    Antonin Guttman - original code
*               Daniel Green (green@superliminal.com) - major clean-up
*                               and implementation of bounding spheres
*               
* PURPOSE:      Multidimensional index
*
* COPYRIGHT:    (C) 2001 by the GRASS Development Team
*
*               This program is free software under the GNU General Public
*               License (>=v2). Read the file COPYING that comes with GRASS
*               for details.
*****************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include "assert.h"
#include "index.h"
#include "card.h"

/* Make a new index, empty.  Consists of a single node. */
struct Node * RTreeNewIndex(void)
{
	struct Node *x;
	x = RTreeNewNode();
	x->level = 0; /* leaf */
	return x;
}

/*
 * Search in an index tree or subtree for all data retangles that
 * overlap the argument rectangle.
 * Return the number of qualifying data rects.
 */
int RTreeSearch(struct Node *N, struct Rect *R, SearchHitCallback shcb, void* cbarg)
{
	register struct Node *n = N;
	register struct Rect *r = R; /* NOTE: Suspected bug was R sent in as Node* and cast to Rect* here.*/
				     /*	Fix not yet tested. */
	register int hitCount = 0;
	register int i;

	assert(n);
	assert(n->level >= 0);
	assert(r);

	if (n->level > 0) /* this is an internal node in the tree */
	{
		for (i=0; i<NODECARD; i++)
			if (n->branch[i].child &&
			    RTreeOverlap(r,&n->branch[i].rect))
			{
				hitCount += RTreeSearch(n->branch[i].child, R, shcb, cbarg);
			}
	}
	else /* this is a leaf node */
	{
		for (i=0; i<LEAFCARD; i++)
			if (n->branch[i].child &&
			    RTreeOverlap(r,&n->branch[i].rect))
			{
				hitCount++;
				if(shcb) /* call the user-provided callback */
					if( ! shcb((int)n->branch[i].child, cbarg))
						return hitCount; /* callback wants to terminate search early */
			}
	}
	return hitCount;
}
/*
 * Inserts a new data rectangle into the index structure.
 * Recursively descends tree, propagates splits back up.
 * Returns 0 if node was not split.  Old node updated.
 * If node was split, returns 1 and sets the pointer pointed to by
 * new_node to point to the new node.  Old node updated to become one of two.
 * The level argument specifies the number of steps up from the leaf
 * level to insert; e.g. a data rectangle goes in at level = 0.
 */
static int RTreeInsertRect2(struct Rect *r,
		int tid, struct Node *n, struct Node **new_node, int level)
{
/*
	register struct Rect *r = R;
	register int tid = Tid;
	register struct Node *n = N, **new_node = New_node;
	register int level = Level;
*/

	register int i;
	struct Branch b;
	struct Node *n2;

	assert(r && n && new_node);
	assert(level >= 0 && level <= n->level);

	/* Still above level for insertion, go down tree recursively */
	if (n->level > level)
	{
		i = RTreePickBranch(r, n);
		if (!RTreeInsertRect2(r, tid, n->branch[i].child, &n2, level))
		{
			/* child was not split */
			n->branch[i].rect =
				RTreeCombineRect(r,&(n->branch[i].rect));
			return 0;
		}
		else    /* child was split */
		{
			n->branch[i].rect = RTreeNodeCover(n->branch[i].child);
			b.child = n2;
			b.rect = RTreeNodeCover(n2);
			return RTreeAddBranch(&b, n, new_node);
		}
	}

	/* Have reached level for insertion. Add rect, split if necessary */
	else if (n->level == level)
	{
		b.rect = *r;
		b.child = (struct Node *) tid;
		/* child field of leaves contains tid of data record */
		return RTreeAddBranch(&b, n, new_node);
	}
	else
	{
		/* Not supposed to happen */
		assert (FALSE);
		return 0;
	}
}

/* 
 * Insert a data rectangle into an index structure.
 * RTreeInsertRect provides for splitting the root;
 * returns 1 if root was split, 0 if it was not.
 * The level argument specifies the number of steps up from the leaf
 * level to insert; e.g. a data rectangle goes in at level = 0.
 * RTreeInsertRect2 does the recursion.
 */
int RTreeInsertRect(struct Rect *R, int Tid, struct Node **Root, int Level)
{
	register struct Rect *r = R;
	register int tid = Tid;
	register struct Node **root = Root;
	register int level = Level;
	register int i;
	register struct Node *newroot;
	struct Node *newnode;
	struct Branch b;
	int result;

	assert(r && root);
	assert(level >= 0 && level <= (*root)->level);
	for (i=0; i<NUMDIMS; i++) {
		assert(r->boundary[i] <= r->boundary[NUMDIMS+i]);
	}

	if (RTreeInsertRect2(r, tid, *root, &newnode, level))  /* root split */
	{
		newroot = RTreeNewNode();  /* grow a new root, & tree taller */
		newroot->level = (*root)->level + 1;
		b.rect = RTreeNodeCover(*root);
		b.child = *root;
		RTreeAddBranch(&b, newroot, NULL);
		b.rect = RTreeNodeCover(newnode);
		b.child = newnode;
		RTreeAddBranch(&b, newroot, NULL);
		*root = newroot;
		result = 1;
	}
	else
		result = 0;

	return result;
}

/*
 * Allocate space for a node in the list used in DeletRect to
 * store Nodes that are too empty.
 */
static struct ListNode * RTreeNewListNode(void)
{
	return (struct ListNode *) malloc(sizeof(struct ListNode));
	/* return new ListNode; */
}

static void RTreeFreeListNode(struct ListNode *p)
{
	free(p);
	/* delete(p); */
}

/* 
 * Add a node to the reinsertion list.  All its branches will later
 * be reinserted into the index structure.
 */
static void RTreeReInsert(struct Node *n, struct ListNode **ee)
{
	register struct ListNode *l;

	l = RTreeNewListNode();
	l->node = n;
	l->next = *ee;
	*ee = l;
}

/*
 * Delete a rectangle from non-root part of an index structure.
 * Called by RTreeDeleteRect.  Descends tree recursively,
 * merges branches on the way back up.
 * Returns 1 if record not found, 0 if success.
 */
static int
RTreeDeleteRect2(struct Rect *R, int Tid, struct Node *N, struct ListNode **Ee)
{
	register struct Rect *r = R;
	register int tid = Tid;
	register struct Node *n = N;
	register struct ListNode **ee = Ee;
	register int i;

	assert(r && n && ee);
	assert(tid >= 0);
	assert(n->level >= 0);

	if (n->level > 0)  /* not a leaf node */
	{
	    for (i = 0; i < NODECARD; i++)
	    {
		if (n->branch[i].child && RTreeOverlap(r, &(n->branch[i].rect)))
		{
			if (!RTreeDeleteRect2(r, tid, n->branch[i].child, ee))
			{
				if (n->branch[i].child->count >= MinNodeFill) {
					n->branch[i].rect = RTreeNodeCover(
						n->branch[i].child);
				}
				else
				{
					/* not enough entries in child, eliminate child node */
					RTreeReInsert(n->branch[i].child, ee);
					RTreeDisconnectBranch(n, i);
				}
				return 0;
			}
		}
	    }
	    return 1;
	}
	else  /* a leaf node */
	{
		for (i = 0; i < LEAFCARD; i++)
		{
			if (n->branch[i].child &&
			    n->branch[i].child == (struct Node *) tid)
			{
				RTreeDisconnectBranch(n, i);
				return 0;
			}
		}
		return 1;
	}
}

/*
 * Delete a data rectangle from an index structure.
 * Pass in a pointer to a Rect, the tid of the record, ptr to ptr to root node.
 * Returns 1 if record not found, 0 if success.
 * RTreeDeleteRect provides for eliminating the root.
 */
int RTreeDeleteRect(struct Rect *R, int Tid, struct Node**Nn)
{
	register struct Rect *r = R;
	register int tid = Tid;
	register struct Node **nn = Nn;
	register int i;
	register struct Node *tmp_nptr;
	struct ListNode *reInsertList = NULL;
	register struct ListNode *e;

	assert(r && nn);
	assert(*nn);
	assert(tid >= 0);

	if (!RTreeDeleteRect2(r, tid, *nn, &reInsertList))
	{
		/* found and deleted a data item */

		/* reinsert any branches from eliminated nodes */
		while (reInsertList)
		{
			tmp_nptr = reInsertList->node;
			for (i = 0; i < MAXKIDS(tmp_nptr); i++)
			{
				if (tmp_nptr->branch[i].child)
				{
					RTreeInsertRect(
						&(tmp_nptr->branch[i].rect),
						(int)tmp_nptr->branch[i].child,
						nn,
						tmp_nptr->level);
				}
			}
			e = reInsertList;
			reInsertList = reInsertList->next;
			RTreeFreeNode(e->node);
			RTreeFreeListNode(e);
		}
		
		/* check for redundant root (not leaf, 1 child) and eliminate */
		if ((*nn)->count == 1 && (*nn)->level > 0)
		{
			for (i = 0; i < NODECARD; i++)
			{
				tmp_nptr = (*nn)->branch[i].child;
				if(tmp_nptr)
					break;
			}
			assert(tmp_nptr);
			RTreeFreeNode(*nn);
			*nn = tmp_nptr;
		}
		return 0;
	}
	else
	{
		return 1;
	}
}