1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/****************************************************************************
* MODULE: R-Tree library
*
* AUTHOR(S): Antonin Guttman - original code
* Daniel Green (green@superliminal.com) - major clean-up
* and implementation of bounding spheres
*
* PURPOSE: Multidimensional index
*
* COPYRIGHT: (C) 2001 by the GRASS Development Team
*
* This program is free software under the GNU General Public
* License (>=v2). Read the file COPYING that comes with GRASS
* for details.
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "assert.h"
#include "index.h"
#include "card.h"
/* Initialize one branch cell in a node. */
static void RTreeInitBranch(struct Branch *b)
{
RTreeInitRect(&(b->rect));
b->child = NULL;
}
/* Initialize a Node structure. */
void RTreeInitNode(struct Node *N)
{
register struct Node *n = N;
register int i;
n->count = 0;
n->level = -1;
for (i = 0; i < MAXCARD; i++)
RTreeInitBranch(&(n->branch[i]));
}
/* Make a new node and initialize to have all branch cells empty. */
struct Node * RTreeNewNode(void)
{
register struct Node *n;
/* n = new Node; */
n = (struct Node*)malloc(sizeof(struct Node));
assert(n);
RTreeInitNode(n);
return n;
}
void RTreeFreeNode(struct Node *p)
{
assert(p);
/* delete p; */
free(p);
}
static void RTreePrintBranch(struct Branch *b, int depth)
{
RTreePrintRect(&(b->rect), depth);
RTreePrintNode(b->child, depth);
}
extern void RTreeTabIn(int depth)
{
int i;
for(i=0; i<depth; i++)
putchar('\t');
}
/* Print out the data in a node. */
void RTreePrintNode(struct Node *n, int depth)
{
int i;
assert(n);
RTreeTabIn(depth);
fprintf (stdout, "node");
if (n->level == 0)
fprintf (stdout, " LEAF");
else if (n->level > 0)
fprintf (stdout, " NONLEAF");
else
fprintf (stdout, " TYPE=?");
fprintf (stdout, " level=%d count=%d address=%o\n", n->level, n->count, (unsigned) n);
for (i=0; i<n->count; i++)
{
if(n->level == 0) {
/* RTreeTabIn(depth); */
/* fprintf (stdout, "\t%d: data = %d\n", i, n->branch[i].child); */
}
else {
RTreeTabIn(depth);
fprintf (stdout, "branch %d\n", i);
RTreePrintBranch(&n->branch[i], depth+1);
}
}
}
/*
* Find the smallest rectangle that includes all rectangles in
* branches of a node.
*/
struct Rect RTreeNodeCover(struct Node *N)
{
register struct Node *n = N;
register int i, first_time=1;
struct Rect r;
assert(n);
RTreeInitRect(&r);
for (i = 0; i < MAXKIDS(n); i++)
if (n->branch[i].child)
{
if (first_time)
{
r = n->branch[i].rect;
first_time = 0;
}
else
r = RTreeCombineRect(&r, &(n->branch[i].rect));
}
return r;
}
/*
* Pick a branch. Pick the one that will need the smallest increase
* in area to accomodate the new rectangle. This will result in the
* least total area for the covering rectangles in the current node.
* In case of a tie, pick the one which was smaller before, to get
* the best resolution when searching.
*/
int RTreePickBranch(struct Rect *R, struct Node *N)
{
register struct Rect *r = R;
register struct Node *n = N;
register struct Rect *rr;
register int i, first_time=1;
RectReal increase, bestIncr=(RectReal)-1, area, bestArea;
int best;
struct Rect tmp_rect;
assert(r && n);
for (i=0; i<MAXKIDS(n); i++)
{
if (n->branch[i].child)
{
rr = &n->branch[i].rect;
area = RTreeRectSphericalVolume(rr);
tmp_rect = RTreeCombineRect(r, rr);
increase = RTreeRectSphericalVolume(&tmp_rect) - area;
if (increase < bestIncr || first_time)
{
best = i;
bestArea = area;
bestIncr = increase;
first_time = 0;
}
else if (increase == bestIncr && area < bestArea)
{
best = i;
bestArea = area;
bestIncr = increase;
}
}
}
return best;
}
/*
* Add a branch to a node. Split the node if necessary.
* Returns 0 if node not split. Old node updated.
* Returns 1 if node split, sets *new_node to address of new node.
* Old node updated, becomes one of two.
*/
int RTreeAddBranch(struct Branch *B, struct Node *N, struct Node **New_node)
{
register struct Branch *b = B;
register struct Node *n = N;
register struct Node **new_node = New_node;
register int i;
assert(b);
assert(n);
if (n->count < MAXKIDS(n)) /* split won't be necessary */
{
for (i = 0; i < MAXKIDS(n); i++) /* find empty branch */
{
if (n->branch[i].child == NULL)
{
n->branch[i] = *b;
n->count++;
break;
}
}
return 0;
}
else
{
assert(new_node);
RTreeSplitNode(n, b, new_node);
return 1;
}
}
/* Disconnect a dependent node. */
void RTreeDisconnectBranch(struct Node *n, int i)
{
assert(n && i>=0 && i<MAXKIDS(n));
assert(n->branch[i].child);
RTreeInitBranch(&(n->branch[i]));
n->count--;
}
/* Destroy (free) node recursively. */
void RTreeDestroyNode (struct Node *n)
{
int i;
if (n->level > 0) { /* it is not leaf -> destroy childs */
for ( i = 0; i < NODECARD; i++) {
if ( n->branch[i].child ) {
RTreeDestroyNode ( n->branch[i].child );
}
}
}
/* Free this node */
RTreeFreeNode( n );
}
|