1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
/****************************************************************************
* MODULE: R-Tree library
*
* AUTHOR(S): Antonin Guttman - original code
* Daniel Green (green@superliminal.com) - major clean-up
* and implementation of bounding spheres
*
* PURPOSE: Multidimensional index
*
* COPYRIGHT: (C) 2001 by the GRASS Development Team
*
* This program is free software under the GNU General Public
* License (>=v2). Read the file COPYING that comes with GRASS
* for details.
*****************************************************************************/
#include <stdio.h>
#include "assert.h"
#include "index.h"
#include "card.h"
#include "split_l.h"
/*-----------------------------------------------------------------------------
| Load branch buffer with branches from full node plus the extra branch.
-----------------------------------------------------------------------------*/
static void RTreeGetBranches(struct Node *N, struct Branch *B)
{
register struct Node *n = N;
register struct Branch *b = B;
register int i;
assert(n);
assert(b);
/* load the branch buffer */
for (i=0; i<MAXKIDS(n); i++)
{
assert(n->branch[i].child); /* every entry should be full */
BranchBuf[i] = n->branch[i];
}
BranchBuf[MAXKIDS(n)] = *b;
BranchCount = MAXKIDS(n) + 1;
/* calculate rect containing all in the set */
CoverSplit = BranchBuf[0].rect;
for (i=1; i<MAXKIDS(n)+1; i++)
{
CoverSplit = RTreeCombineRect(&CoverSplit, &BranchBuf[i].rect);
}
RTreeInitNode(n);
}
/*-----------------------------------------------------------------------------
| Initialize a PartitionVars structure.
-----------------------------------------------------------------------------*/
static void RTreeInitPVars(struct PartitionVars *P, int maxrects, int minfill)
{
register struct PartitionVars *p = P;
register int i;
assert(p);
p->count[0] = p->count[1] = 0;
p->total = maxrects;
p->minfill = minfill;
for (i=0; i<maxrects; i++)
{
p->taken[i] = FALSE;
p->partition[i] = -1;
}
}
/*-----------------------------------------------------------------------------
| Put a branch in one of the groups.
-----------------------------------------------------------------------------*/
static void RTreeClassify(int i, int group, struct PartitionVars *p)
{
assert(p);
assert(!p->taken[i]);
p->partition[i] = group;
p->taken[i] = TRUE;
if (p->count[group] == 0)
p->cover[group] = BranchBuf[i].rect;
else
p->cover[group] = RTreeCombineRect(&BranchBuf[i].rect,
&p->cover[group]);
p->area[group] = RTreeRectSphericalVolume(&p->cover[group]);
p->count[group]++;
}
/*-----------------------------------------------------------------------------
| Pick two rects from set to be the first elements of the two groups.
| Pick the two that are separated most along any dimension, or overlap least.
| Distance for separation or overlap is measured modulo the width of the
| space covered by the entire set along that dimension.
-----------------------------------------------------------------------------*/
static void RTreePickSeeds(struct PartitionVars *P)
{
register struct PartitionVars *p = P;
register int i, dim, high;
register struct Rect *r, *rlow, *rhigh;
register float w, separation, bestSep;
RectReal width[NUMDIMS];
int leastUpper[NUMDIMS], greatestLower[NUMDIMS];
int seed0, seed1;
assert(p);
for (dim=0; dim<NUMDIMS; dim++)
{
high = dim + NUMDIMS;
/* find the rectangles farthest out in each direction
* along this dimens */
greatestLower[dim] = leastUpper[dim] = 0;
for (i=1; i<NODECARD+1; i++)
{
r = &BranchBuf[i].rect;
if (r->boundary[dim] >
BranchBuf[greatestLower[dim]].rect.boundary[dim])
{
greatestLower[dim] = i;
}
if (r->boundary[high] <
BranchBuf[leastUpper[dim]].rect.boundary[high])
{
leastUpper[dim] = i;
}
}
/* find width of the whole collection along this dimension */
width[dim] = CoverSplit.boundary[high] -
CoverSplit.boundary[dim];
}
/* pick the best separation dimension and the two seed rects */
for (dim=0; dim<NUMDIMS; dim++)
{
high = dim + NUMDIMS;
/* divisor for normalizing by width */
assert(width[dim] >= 0);
if (width[dim] == 0)
w = (RectReal)1;
else
w = width[dim];
rlow = &BranchBuf[leastUpper[dim]].rect;
rhigh = &BranchBuf[greatestLower[dim]].rect;
if (dim == 0)
{
seed0 = leastUpper[0];
seed1 = greatestLower[0];
separation = bestSep =
(rhigh->boundary[0] -
rlow->boundary[NUMDIMS]) / w;
}
else
{
separation =
(rhigh->boundary[dim] -
rlow->boundary[dim+NUMDIMS]) / w;
if (separation > bestSep)
{
seed0 = leastUpper[dim];
seed1 = greatestLower[dim];
bestSep = separation;
}
}
}
if (seed0 != seed1)
{
RTreeClassify(seed0, 0, p);
RTreeClassify(seed1, 1, p);
}
}
/*-----------------------------------------------------------------------------
| Put each rect that is not already in a group into a group.
| Process one rect at a time, using the following hierarchy of criteria.
| In case of a tie, go to the next test.
| 1) If one group already has the max number of elements that will allow
| the minimum fill for the other group, put r in the other.
| 2) Put r in the group whose cover will expand less. This automatically
| takes care of the case where one group cover contains r.
| 3) Put r in the group whose cover will be smaller. This takes care of the
| case where r is contained in both covers.
| 4) Put r in the group with fewer elements.
| 5) Put in group 1 (arbitrary).
|
| Also update the covers for both groups.
-----------------------------------------------------------------------------*/
static void RTreePigeonhole(struct PartitionVars *P)
{
register struct PartitionVars *p = P;
struct Rect newCover[2];
register int i, group;
RectReal newArea[2], increase[2];
for (i=0; i<NODECARD+1; i++)
{
if (!p->taken[i])
{
/* if one group too full, put rect in the other */
if (p->count[0] >= p->total - p->minfill)
{
RTreeClassify(i, 1, p);
continue;
}
else if (p->count[1] >= p->total - p->minfill)
{
RTreeClassify(i, 0, p);
continue;
}
/* find areas of the two groups' old and new covers */
for (group=0; group<2; group++)
{
if (p->count[group]>0)
newCover[group] = RTreeCombineRect(
&BranchBuf[i].rect,
&p->cover[group]);
else
newCover[group] = BranchBuf[i].rect;
newArea[group] = RTreeRectSphericalVolume(
&newCover[group]);
increase[group] = newArea[group]-p->area[group];
}
/* put rect in group whose cover will expand less */
if (increase[0] < increase[1])
RTreeClassify(i, 0, p);
else if (increase[1] < increase[0])
RTreeClassify(i, 1, p);
/* put rect in group that will have a smaller cover */
else if (p->area[0] < p->area[1])
RTreeClassify(i, 0, p);
else if (p->area[1] < p->area[0])
RTreeClassify(i, 1, p);
/* put rect in group with fewer elements */
else if (p->count[0] < p->count[1])
RTreeClassify(i, 0, p);
else
RTreeClassify(i, 1, p);
}
}
assert(p->count[0] + p->count[1] == NODECARD + 1);
}
/*-----------------------------------------------------------------------------
| Method 0 for finding a partition:
| First find two seeds, one for each group, well separated.
| Then put other rects in whichever group will be smallest after addition.
-----------------------------------------------------------------------------*/
static void RTreeMethodZero(struct PartitionVars *p, int minfill)
{
RTreeInitPVars(p, BranchCount, minfill);
RTreePickSeeds(p);
RTreePigeonhole(p);
}
/*-----------------------------------------------------------------------------
| Copy branches from the buffer into two nodes according to the partition.
-----------------------------------------------------------------------------*/
static void RTreeLoadNodes(struct Node *N, struct Node *Q,
struct PartitionVars *P)
{
register struct Node *n = N, *q = Q;
register struct PartitionVars *p = P;
register int i;
assert(n);
assert(q);
assert(p);
for (i=0; i<NODECARD+1; i++)
{
if (p->partition[i] == 0)
RTreeAddBranch(&BranchBuf[i], n, NULL);
else if (p->partition[i] == 1)
RTreeAddBranch(&BranchBuf[i], q, NULL);
else
assert(FALSE);
}
}
/*-----------------------------------------------------------------------------
| Split a node.
| Divides the nodes branches and the extra one between two nodes.
| Old node is one of the new ones, and one really new one is created.
-----------------------------------------------------------------------------*/
void RTreeSplitNode(struct Node *n, struct Branch *b, struct Node **nn)
{
register struct PartitionVars *p;
register int level;
RectReal area;
assert(n);
assert(b);
/* load all the branches into a buffer, initialize old node */
level = n->level;
RTreeGetBranches(n, b);
/* find partition */
p = &Partitions[0];
/* Note: can't use MINFILL(n) below since n was cleared by GetBranches() */
RTreeMethodZero(p, level>0 ? MinNodeFill : MinLeafFill);
/* record how good the split was for statistics */
area = p->area[0] + p->area[1];
/* put branches from buffer in 2 nodes according to chosen partition */
*nn = RTreeNewNode();
(*nn)->level = n->level = level;
RTreeLoadNodes(n, *nn, p);
assert(n->count + (*nn)->count == NODECARD+1);
}
/*-----------------------------------------------------------------------------
| Print out data for a partition from PartitionVars struct.
-----------------------------------------------------------------------------*/
static void RTreePrintPVars(struct PartitionVars *p)
{
int i;
assert(p);
fprintf (stdout, "\npartition:\n");
for (i=0; i<NODECARD+1; i++)
{
fprintf (stdout, "%3d\t", i);
}
fprintf (stdout, "\n");
for (i=0; i<NODECARD+1; i++)
{
if (p->taken[i])
fprintf (stdout, " t\t");
else
fprintf (stdout, "\t");
}
fprintf (stdout, "\n");
for (i=0; i<NODECARD+1; i++)
{
fprintf (stdout, "%3d\t", p->partition[i]);
}
fprintf (stdout, "\n");
fprintf (stdout, "count[0] = %d area = %f\n", p->count[0], p->area[0]);
fprintf (stdout, "count[1] = %d area = %f\n", p->count[1], p->area[1]);
fprintf (stdout, "total area = %f effectiveness = %3.2f\n",
p->area[0] + p->area[1],
RTreeRectSphericalVolume(&CoverSplit)/(p->area[0]+p->area[1]));
fprintf (stdout, "cover[0]:\n");
RTreePrintRect(&p->cover[0], 0);
fprintf (stdout, "cover[1]:\n");
RTreePrintRect(&p->cover[1], 0);
}
|