File: split_l.c

package info (click to toggle)
grass 6.0.2-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 40,044 kB
  • ctags: 31,303
  • sloc: ansic: 321,125; tcl: 25,676; sh: 11,176; cpp: 10,098; makefile: 5,025; fortran: 1,846; yacc: 493; lex: 462; perl: 133; sed: 1
file content (381 lines) | stat: -rw-r--r-- 10,625 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/****************************************************************************
* MODULE:       R-Tree library 
*              
* AUTHOR(S):    Antonin Guttman - original code
*               Daniel Green (green@superliminal.com) - major clean-up
*                               and implementation of bounding spheres
*               
* PURPOSE:      Multidimensional index
*
* COPYRIGHT:    (C) 2001 by the GRASS Development Team
*
*               This program is free software under the GNU General Public
*               License (>=v2). Read the file COPYING that comes with GRASS
*               for details.
*****************************************************************************/

#include <stdio.h>
#include "assert.h"
#include "index.h"
#include "card.h"
#include "split_l.h"


/*-----------------------------------------------------------------------------
| Load branch buffer with branches from full node plus the extra branch.
-----------------------------------------------------------------------------*/
static void RTreeGetBranches(struct Node *N, struct Branch *B)
{
	register struct Node *n = N;
	register struct Branch *b = B;
	register int i;

	assert(n);
	assert(b);

	/* load the branch buffer */
	for (i=0; i<MAXKIDS(n); i++)
	{
		assert(n->branch[i].child);  /* every entry should be full */
		BranchBuf[i] = n->branch[i];
	}
	BranchBuf[MAXKIDS(n)] = *b;
	BranchCount = MAXKIDS(n) + 1;

	/* calculate rect containing all in the set */
	CoverSplit = BranchBuf[0].rect;
	for (i=1; i<MAXKIDS(n)+1; i++)
	{
		CoverSplit = RTreeCombineRect(&CoverSplit, &BranchBuf[i].rect);
	}

	RTreeInitNode(n);
}



/*-----------------------------------------------------------------------------
| Initialize a PartitionVars structure.
-----------------------------------------------------------------------------*/
static void RTreeInitPVars(struct PartitionVars *P, int maxrects, int minfill)
{
	register struct PartitionVars *p = P;
	register int i;
	assert(p);

	p->count[0] = p->count[1] = 0;
	p->total = maxrects;
	p->minfill = minfill;
	for (i=0; i<maxrects; i++)
	{
		p->taken[i] = FALSE;
		p->partition[i] = -1;
	}
}



/*-----------------------------------------------------------------------------
| Put a branch in one of the groups.
-----------------------------------------------------------------------------*/
static void RTreeClassify(int i, int group, struct PartitionVars *p)
{
	assert(p);
	assert(!p->taken[i]);

	p->partition[i] = group;
	p->taken[i] = TRUE;

	if (p->count[group] == 0)
		p->cover[group] = BranchBuf[i].rect;
	else
		p->cover[group] = RTreeCombineRect(&BranchBuf[i].rect,
					&p->cover[group]);
	p->area[group] = RTreeRectSphericalVolume(&p->cover[group]);
	p->count[group]++;
}



/*-----------------------------------------------------------------------------
| Pick two rects from set to be the first elements of the two groups.
| Pick the two that are separated most along any dimension, or overlap least.
| Distance for separation or overlap is measured modulo the width of the
| space covered by the entire set along that dimension.
-----------------------------------------------------------------------------*/
static void RTreePickSeeds(struct PartitionVars *P)
{
	register struct PartitionVars *p = P;
	register int i, dim, high;
	register struct Rect *r, *rlow, *rhigh;
	register float w, separation, bestSep;
	RectReal width[NUMDIMS];
	int leastUpper[NUMDIMS], greatestLower[NUMDIMS];
	int seed0, seed1;
	assert(p);
	
	for (dim=0; dim<NUMDIMS; dim++)
	{
		high = dim + NUMDIMS;

		/* find the rectangles farthest out in each direction
		 * along this dimens */
		greatestLower[dim] = leastUpper[dim] = 0;
		for (i=1; i<NODECARD+1; i++)
		{
			r = &BranchBuf[i].rect;
			if (r->boundary[dim] >
			    BranchBuf[greatestLower[dim]].rect.boundary[dim])
			{
				greatestLower[dim] = i;
			}
			if (r->boundary[high] <
			    BranchBuf[leastUpper[dim]].rect.boundary[high])
			{
				leastUpper[dim] = i;
			}
		}

		/* find width of the whole collection along this dimension */
		width[dim] = CoverSplit.boundary[high] -
			     CoverSplit.boundary[dim];
	}

	/* pick the best separation dimension and the two seed rects */
	for (dim=0; dim<NUMDIMS; dim++)
	{
		high = dim + NUMDIMS;

		/* divisor for normalizing by width */
		assert(width[dim] >= 0);
		if (width[dim] == 0)
			w = (RectReal)1;
		else
			w = width[dim];

		rlow = &BranchBuf[leastUpper[dim]].rect;
		rhigh = &BranchBuf[greatestLower[dim]].rect;
		if (dim == 0)
		{
			seed0 = leastUpper[0];
			seed1 = greatestLower[0];
			separation = bestSep =
				(rhigh->boundary[0] -
				 rlow->boundary[NUMDIMS]) / w;
		}
		else
		{
			separation =
				(rhigh->boundary[dim] -
				rlow->boundary[dim+NUMDIMS]) / w;
			if (separation > bestSep)
			{
				seed0 = leastUpper[dim];
				seed1 = greatestLower[dim];
				bestSep = separation;
			}
		}
	}

	if (seed0 != seed1)
	{
		RTreeClassify(seed0, 0, p);
		RTreeClassify(seed1, 1, p);
	}
}



/*-----------------------------------------------------------------------------
| Put each rect that is not already in a group into a group.
| Process one rect at a time, using the following hierarchy of criteria.
| In case of a tie, go to the next test.
| 1) If one group already has the max number of elements that will allow
| the minimum fill for the other group, put r in the other.
| 2) Put r in the group whose cover will expand less.  This automatically
| takes care of the case where one group cover contains r.
| 3) Put r in the group whose cover will be smaller.  This takes care of the
| case where r is contained in both covers.
| 4) Put r in the group with fewer elements.
| 5) Put in group 1 (arbitrary).
|
| Also update the covers for both groups.
-----------------------------------------------------------------------------*/
static void RTreePigeonhole(struct PartitionVars *P)
{
	register struct PartitionVars *p = P;
	struct Rect newCover[2];
	register int i, group;
	RectReal newArea[2], increase[2];

	for (i=0; i<NODECARD+1; i++)
	{
		if (!p->taken[i])
		{
			/* if one group too full, put rect in the other */
			if (p->count[0] >= p->total - p->minfill)
			{
				RTreeClassify(i, 1, p);
				continue;
			}
			else if (p->count[1] >= p->total - p->minfill)
			{
				RTreeClassify(i, 0, p);
				continue;
			}

			/* find areas of the two groups' old and new covers */
			for (group=0; group<2; group++)
			{
				if (p->count[group]>0)
					newCover[group] = RTreeCombineRect(
						&BranchBuf[i].rect,
						&p->cover[group]);
				else
					newCover[group] = BranchBuf[i].rect;
				newArea[group] = RTreeRectSphericalVolume(
							&newCover[group]);
				increase[group] = newArea[group]-p->area[group];
			}

			/* put rect in group whose cover will expand less */
			if (increase[0] < increase[1])
				RTreeClassify(i, 0, p);
			else if (increase[1] < increase[0])
				RTreeClassify(i, 1, p);

			/* put rect in group that will have a smaller cover */
			else if (p->area[0] < p->area[1])
				RTreeClassify(i, 0, p);
			else if (p->area[1] < p->area[0])
				RTreeClassify(i, 1, p);

			/* put rect in group with fewer elements */
			else if (p->count[0] < p->count[1])
				RTreeClassify(i, 0, p);
			else
				RTreeClassify(i, 1, p);
		}
	}
	assert(p->count[0] + p->count[1] == NODECARD + 1);
}



/*-----------------------------------------------------------------------------
| Method 0 for finding a partition:
| First find two seeds, one for each group, well separated.
| Then put other rects in whichever group will be smallest after addition.
-----------------------------------------------------------------------------*/
static void RTreeMethodZero(struct PartitionVars *p, int minfill)
{
	RTreeInitPVars(p, BranchCount, minfill);
	RTreePickSeeds(p);
	RTreePigeonhole(p);
}




/*-----------------------------------------------------------------------------
| Copy branches from the buffer into two nodes according to the partition.
-----------------------------------------------------------------------------*/
static void RTreeLoadNodes(struct Node *N, struct Node *Q,
			struct PartitionVars *P)
{
	register struct Node *n = N, *q = Q;
	register struct PartitionVars *p = P;
	register int i;
	assert(n);
	assert(q);
	assert(p);

	for (i=0; i<NODECARD+1; i++)
	{
		if (p->partition[i] == 0)
			RTreeAddBranch(&BranchBuf[i], n, NULL);
		else if (p->partition[i] == 1)
			RTreeAddBranch(&BranchBuf[i], q, NULL);
		else
			assert(FALSE);
	}
}



/*-----------------------------------------------------------------------------
| Split a node.
| Divides the nodes branches and the extra one between two nodes.
| Old node is one of the new ones, and one really new one is created.
-----------------------------------------------------------------------------*/
void RTreeSplitNode(struct Node *n, struct Branch *b, struct Node **nn)
{
	register struct PartitionVars *p;
	register int level;
	RectReal area;

	assert(n);
	assert(b);

	/* load all the branches into a buffer, initialize old node */
	level = n->level;
	RTreeGetBranches(n, b);

	/* find partition */
	p = &Partitions[0];

	/* Note: can't use MINFILL(n) below since n was cleared by GetBranches() */
	RTreeMethodZero(p, level>0 ? MinNodeFill : MinLeafFill);

	/* record how good the split was for statistics */
	area = p->area[0] + p->area[1];

	/* put branches from buffer in 2 nodes according to chosen partition */
	*nn = RTreeNewNode();
	(*nn)->level = n->level = level;
	RTreeLoadNodes(n, *nn, p);
	assert(n->count + (*nn)->count == NODECARD+1);
}



/*-----------------------------------------------------------------------------
| Print out data for a partition from PartitionVars struct.
-----------------------------------------------------------------------------*/
static void RTreePrintPVars(struct PartitionVars *p)
{
	int i;
	assert(p);

	fprintf (stdout, "\npartition:\n");
	for (i=0; i<NODECARD+1; i++)
	{
		fprintf (stdout, "%3d\t", i);
	}
	fprintf (stdout, "\n");
	for (i=0; i<NODECARD+1; i++)
	{
		if (p->taken[i])
			fprintf (stdout, "  t\t");
		else
			fprintf (stdout, "\t");
	}
	fprintf (stdout, "\n");
	for (i=0; i<NODECARD+1; i++)
	{
		fprintf (stdout, "%3d\t", p->partition[i]);
	}
	fprintf (stdout, "\n");

	fprintf (stdout, "count[0] = %d  area = %f\n", p->count[0], p->area[0]);
	fprintf (stdout, "count[1] = %d  area = %f\n", p->count[1], p->area[1]);
	fprintf (stdout, "total area = %f  effectiveness = %3.2f\n",
		p->area[0] + p->area[1],
		RTreeRectSphericalVolume(&CoverSplit)/(p->area[0]+p->area[1]));

	fprintf (stdout, "cover[0]:\n");
	RTreePrintRect(&p->cover[0], 0);

	fprintf (stdout, "cover[1]:\n");
	RTreePrintRect(&p->cover[1], 0);
}