File: split_q.c

package info (click to toggle)
grass 6.0.2-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 40,044 kB
  • ctags: 31,303
  • sloc: ansic: 321,125; tcl: 25,676; sh: 11,176; cpp: 10,098; makefile: 5,025; fortran: 1,846; yacc: 493; lex: 462; perl: 133; sed: 1
file content (330 lines) | stat: -rw-r--r-- 9,011 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/****************************************************************************
* MODULE:       R-Tree library 
*              
* AUTHOR(S):    Antonin Guttman - original code
*               Daniel Green (green@superliminal.com) - major clean-up
*                               and implementation of bounding spheres
*               
* PURPOSE:      Multidimensional index
*
* COPYRIGHT:    (C) 2001 by the GRASS Development Team
*
*               This program is free software under the GNU General Public
*               License (>=v2). Read the file COPYING that comes with GRASS
*               for details.
*****************************************************************************/

#define SPLIT_QC
#include <stdio.h>
#include "assert.h"
#include "index.h"
#include "card.h"
#include "split_q.h"



/*-----------------------------------------------------------------------------
| Load branch buffer with branches from full node plus the extra branch.
-----------------------------------------------------------------------------*/
static void RTreeGetBranches(struct Node *n, struct Branch *b)
{
	register int i;

	assert(n);
	assert(b);

	/* load the branch buffer */
	for (i=0; i<MAXKIDS(n); i++)
	{
		assert(n->branch[i].child); /* n should have every entry full */
		BranchBuf[i] = n->branch[i];
	}
	BranchBuf[MAXKIDS(n)] = *b;
	BranchCount = MAXKIDS(n) + 1;

	/* calculate rect containing all in the set */
	CoverSplit = BranchBuf[0].rect;
	for (i=1; i<MAXKIDS(n)+1; i++)
	{
		CoverSplit = RTreeCombineRect(&CoverSplit, &BranchBuf[i].rect);
	}
	CoverSplitArea = RTreeRectSphericalVolume(&CoverSplit);

	RTreeInitNode(n);
}




/*-----------------------------------------------------------------------------
| Put a branch in one of the groups.
-----------------------------------------------------------------------------*/
static void RTreeClassify(int i, int group, struct PartitionVars *p)
{
	assert(p);
	assert(!p->taken[i]);

	p->partition[i] = group;
	p->taken[i] = TRUE;

	if (p->count[group] == 0)
		p->cover[group] = BranchBuf[i].rect;
	else
		p->cover[group] =
			RTreeCombineRect(&BranchBuf[i].rect, &p->cover[group]);
	p->area[group] = RTreeRectSphericalVolume(&p->cover[group]);
	p->count[group]++;
}




/*-----------------------------------------------------------------------------
| Pick two rects from set to be the first elements of the two groups.
| Pick the two that waste the most area if covered by a single rectangle.
-----------------------------------------------------------------------------*/
static void RTreePickSeeds(struct PartitionVars *p)
{
	register int i, j, seed0, seed1;
	RectReal worst, waste, area[MAXCARD+1];

	for (i=0; i<p->total; i++)
		area[i] = RTreeRectSphericalVolume(&BranchBuf[i].rect);

	worst = -CoverSplitArea - 1;
	for (i=0; i<p->total-1; i++)
	{
		for (j=i+1; j<p->total; j++)
		{
			struct Rect one_rect;
		   
			one_rect = RTreeCombineRect(
						&BranchBuf[i].rect,
						&BranchBuf[j].rect);
			waste = RTreeRectSphericalVolume(&one_rect) -
					area[i] - area[j];
			if (waste > worst)
			{
				worst = waste;
				seed0 = i;
				seed1 = j;
			}
		}
	}
	RTreeClassify(seed0, 0, p);
	RTreeClassify(seed1, 1, p);
}




/*-----------------------------------------------------------------------------
| Copy branches from the buffer into two nodes according to the partition.
-----------------------------------------------------------------------------*/
static void RTreeLoadNodes(struct Node *n, struct Node *q,
			struct PartitionVars *p)
{
	register int i;
	assert(n);
	assert(q);
	assert(p);

	for (i=0; i<p->total; i++)
	{
		assert(p->partition[i] == 0 || p->partition[i] == 1);
		if (p->partition[i] == 0)
			RTreeAddBranch(&BranchBuf[i], n, NULL);
		else if (p->partition[i] == 1)
			RTreeAddBranch(&BranchBuf[i], q, NULL);
	}
}




/*-----------------------------------------------------------------------------
| Initialize a PartitionVars structure.
-----------------------------------------------------------------------------*/
static void RTreeInitPVars(struct PartitionVars *p, int maxrects, int minfill)
{
	register int i;
	assert(p);

	p->count[0] = p->count[1] = 0;
	p->cover[0] = p->cover[1] = RTreeNullRect();
	p->area[0] = p->area[1] = (RectReal)0;
	p->total = maxrects;
	p->minfill = minfill;
	for (i=0; i<maxrects; i++)
	{
		p->taken[i] = FALSE;
		p->partition[i] = -1;
	}
}




/*-----------------------------------------------------------------------------
| Print out data for a partition from PartitionVars struct.
-----------------------------------------------------------------------------*/
static void RTreePrintPVars(struct PartitionVars *p)
{
	register int i;
	assert(p);

	fprintf (stdout, "\npartition:\n");
	for (i=0; i<p->total; i++)
	{
		fprintf (stdout, "%3d\t", i);
	}
	fprintf (stdout, "\n");
	for (i=0; i<p->total; i++)
	{
		if (p->taken[i])
			fprintf (stdout, "  t\t");
		else
			fprintf (stdout, "\t");
	}
	fprintf (stdout, "\n");
	for (i=0; i<p->total; i++)
	{
		fprintf (stdout, "%3d\t", p->partition[i]);
	}
	fprintf (stdout, "\n");

	fprintf (stdout, "count[0] = %d  area = %f\n", p->count[0], p->area[0]);
	fprintf (stdout, "count[1] = %d  area = %f\n", p->count[1], p->area[1]);
	if (p->area[0] + p->area[1] > 0)
	{
		fprintf (stdout, "total area = %f  effectiveness = %3.2f\n",
			p->area[0] + p->area[1],
			(float)CoverSplitArea / (p->area[0] + p->area[1]));
	}
	fprintf (stdout, "cover[0]:\n");
	RTreePrintRect(&p->cover[0], 0);

	fprintf (stdout, "cover[1]:\n");
	RTreePrintRect(&p->cover[1], 0);
}


/*-----------------------------------------------------------------------------
| Method #0 for choosing a partition:
| As the seeds for the two groups, pick the two rects that would waste the
| most area if covered by a single rectangle, i.e. evidently the worst pair
| to have in the same group.
| Of the remaining, one at a time is chosen to be put in one of the two groups.
| The one chosen is the one with the greatest difference in area expansion
| depending on which group - the rect most strongly attracted to one group
| and repelled from the other.
| If one group gets too full (more would force other group to violate min
| fill requirement) then other group gets the rest.
| These last are the ones that can go in either group most easily.
-----------------------------------------------------------------------------*/
static void RTreeMethodZero(struct PartitionVars *p, int minfill)
{
	register int i;
	RectReal biggestDiff;
	register int group, chosen, betterGroup;
	assert(p);

	RTreeInitPVars(p, BranchCount, minfill);
	RTreePickSeeds(p);

	while (p->count[0] + p->count[1] < p->total
		&& p->count[0] < p->total - p->minfill
		&& p->count[1] < p->total - p->minfill)
	{
		biggestDiff = (RectReal)-1.;
		for (i=0; i<p->total; i++)
		{
			if (!p->taken[i])
			{
				struct Rect *r, rect_0, rect_1;
				RectReal growth0, growth1, diff;

				r = &BranchBuf[i].rect;
				rect_0 = RTreeCombineRect(r, &p->cover[0]);
				rect_1 = RTreeCombineRect(r, &p->cover[1]);
				growth0 = RTreeRectSphericalVolume(
						&rect_0)-p->area[0];
				growth1 = RTreeRectSphericalVolume(
						&rect_1)-p->area[1];
				diff = growth1 - growth0;
				if (diff >= 0)
					group = 0;
				else
				{
					group = 1;
					diff = -diff;
				}

				if (diff > biggestDiff)
				{
					biggestDiff = diff;
					chosen = i;
					betterGroup = group;
				}
				else if (diff==biggestDiff &&
					 p->count[group]<p->count[betterGroup])
				{
					chosen = i;
					betterGroup = group;
				}
			}
		}
		RTreeClassify(chosen, betterGroup, p);
	}

	/* if one group too full, put remaining rects in the other */
	if (p->count[0] + p->count[1] < p->total)
	{
		if (p->count[0] >= p->total - p->minfill)
			group = 1;
		else
			group = 0;
		for (i=0; i<p->total; i++)
		{
			if (!p->taken[i])
				RTreeClassify(i, group, p);
		}
	}

	assert(p->count[0] + p->count[1] == p->total);
	assert(p->count[0] >= p->minfill && p->count[1] >= p->minfill);
}


/*-----------------------------------------------------------------------------
| Split a node.
| Divides the nodes branches and the extra one between two nodes.
| Old node is one of the new ones, and one really new one is created.
| Tries more than one method for choosing a partition, uses best result.
-----------------------------------------------------------------------------*/
extern void RTreeSplitNode(struct Node *n, struct Branch *b, struct Node **nn)
{
	register struct PartitionVars *p;
	register int level;

	assert(n);
	assert(b);

	/* load all the branches into a buffer, initialize old node */
	level = n->level;
	RTreeGetBranches(n, b);

	/* find partition */
	p = &Partitions[0];
	/* Note: can't use MINFILL(n) below since n was cleared by GetBranches() */
	RTreeMethodZero(p, level>0 ? MinNodeFill : MinLeafFill);

	/*
	 * put branches from buffer into 2 nodes
	 * according to chosen partition
	 */
	*nn = RTreeNewNode();
	(*nn)->level = n->level = level;
	RTreeLoadNodes(n, *nn, p);
	assert(n->count+(*nn)->count == p->total);
}