File: inverse.c

package info (click to toggle)
grass 6.0.2-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 40,044 kB
  • ctags: 31,303
  • sloc: ansic: 321,125; tcl: 25,676; sh: 11,176; cpp: 10,098; makefile: 5,025; fortran: 1,846; yacc: 493; lex: 462; perl: 133; sed: 1
file content (149 lines) | stat: -rw-r--r-- 3,226 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*  @(#)inverse.c	2.1  6/26/87  */
#include <math.h>
#include "libtrans.h"

#define EPSILON 1.0e-16

/* DIM_matrix is defined in "libtrans.h" */
#define N	DIM_matrix

/*
 * inverse: invert a square matrix (puts pivot elements on main diagonal).
 *          returns arg2 as the inverse of arg1.
 *
 *  This routine is based on a routine found in Andrei Rogers, "Matrix
 *  Methods in Urban and Regional Analysis", (1971), pp. 143-153.
 */
int inverse (double m[N][N])
{
    int i, j, k, l, ir=0, ic=0 ;
    int ipivot[N], itemp[N][2];
    double pivot[N], t;
    double fabs();


    if (isnull (m))
        return (-1) ;


    /* initialization */
    for (i = 0; i < N; i++)
        ipivot[i] = 0;

    for (i = 0; i < N; i++)
    {
        t = 0.0;  /* search for pivot element */

        for (j = 0; j < N; j++)
        {
            if (ipivot[j] == 1) /* found pivot */
                continue;

            for (k = 0; k < N; k++)
                switch (ipivot[k]-1)
                {
                    case  0:
                        break;
                    case -1:
                        if (fabs (t) < fabs (m[j][k]))
                        {
                            ir = j;
                            ic = k;
                            t = m[j][k];
                        }
                        break;
                    case  1:
                        return (-1);
                        break;
                    default: /* shouldn't get here */
                        return (-1);
                        break;
                }
        }

        ipivot[ic] += 1;
        if (ipivot[ic] > 1) /* check for dependency */
		{
            return (-1);
		}

        /* interchange rows to put pivot element on diagonal */
        if (ir != ic)
            for (l = 0; l < N; l++)
            {
                t = m[ir][l];
                m[ir][l] = m[ic][l];
                m[ic][l] = t;
            }

        itemp[i][0] = ir;
        itemp[i][1] = ic;
        pivot[i] = m[ic][ic];

        /* check for zero pivot */
        if (fabs (pivot[i]) < EPSILON)
		{
            return (-1);
		}

        /* divide pivot row by pivot element */
        m[ic][ic] = 1.0;

        for (j = 0; j < N; j++)
            m[ic][j] /= pivot[i];

        /* reduce nonpivot rows */
        for (k = 0; k < N; k++)
            if (k != ic)
            {
                t = m[k][ic];
                m[k][ic] = 0.0;

                for (l = 0; l < N; l++)
                    m[k][l] -= (m[ic][l] * t);
            }
    }

    /* interchange columns */
    for (i = 0; i < N; i++)
    {
        l = N - i - 1;
        if (itemp[l][0] == itemp[l][1])
            continue;

        ir = itemp[l][0];
        ic = itemp[l][1];

        for (k = 0; k < N; k++)
        {
            t = m[k][ir];
            m[k][ir] = m[k][ic];
            m[k][ic] = t;
        }
    }
    
    return 1;
}




#define ZERO 1.0e-8

/*
 * isnull: returns 1 if matrix is null, else 0.
 */

int isnull (double a[N][N])
{
    register int i, j;
    double fabs();


    for (i = 0; i < N; i++)
        for (j = 0; j < N; j++)
            if ((fabs (a[i][j]) - ZERO) > ZERO)
                return 0;

    return 1;
}