File: main.c

package info (click to toggle)
grass 6.0.2-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 40,044 kB
  • ctags: 31,303
  • sloc: ansic: 321,125; tcl: 25,676; sh: 11,176; cpp: 10,098; makefile: 5,025; fortran: 1,846; yacc: 493; lex: 462; perl: 133; sed: 1
file content (625 lines) | stat: -rw-r--r-- 18,851 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/****************************************************************************
*
* MODULE:       v.kernel
*
* AUTHOR(S):    Stefano Menegon, ITC-irst, Trento, Italy
* PURPOSE:      Generates a raster density map from vector points data using 
*               a moving 2D isotropic Gaussian kernel or
*               optionally generates a vector density map on vector network 
*               with a 1D kernel
* COPYRIGHT:    (C) 2004 by the GRASS Development Team
*
*               This program is free software under the GNU General Public
*   	    	License (>=v2). Read the file COPYING that comes with GRASS
*   	    	for details.
*
*****************************************************************************/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include "gis.h"
#include "Vect.h"
#include "global.h"


static int ndists;    /* number of distances in dists */
static double *dists; /* array of all distances < dmax */
static int    npoints;
int    net = 0;
static int verbose = 1 ;
static double dimension = 2.;
 

    /* define score function L(window size) */
double L(double smooth) 
{
  int ii;
  double resL,n,term;  

  n = npoints;
  resL = 0.;
  term=1./pow((2.*M_PI),dimension/2.);  

  for(ii=0; ii < ndists; ii++){ 
    /*    resL+= gaussianFunction(dists[ii]/smooth,2.,dimension) - 2. * gaussianKernel(dists[ii]/smooth,term); */
    resL+= gaussianFunction(dists[ii]/smooth,2.,dimension) - 2. * gaussianFunction(dists[ii]/smooth,1.,dimension);
  }

  if ( !net ) resL *= 2.; 

   resL = (1./(pow(n,2.)*pow(smooth,dimension))) * (resL + n*( gaussianFunction(0.,2.,dimension) - 2. * gaussianFunction(0.,1.,dimension)) ) + (2./(n*pow(smooth,dimension)))*gaussianFunction(0.,1.,dimension);   

/* resL = (1./(pow(n,2.)*pow(smooth,dimension))) * (resL + n*( gaussianFunction(0.,2.,dimension) - 2. * gaussianKernel(0.,term)) ) + (2./(n*pow(smooth,dimension)))*gaussianKernel(0.,term);   */
  G_debug(3, "smooth = %e resL = %e", smooth, resL);  
  if(verbose){
    fprintf (stderr, "\tScore Value=%f\tsmoothing parameter (standard deviation)=%f\n",resL, smooth);   
  }
  return(resL);
}


int main(int argc, char **argv)
{
  struct Option *in_opt, *net_opt, *out_opt;
  struct Option *stddev_opt, *dsize_opt, *segmax_opt, *netmax_opt, *multip_opt;
  struct Flag *flag_o, *flag_v, *flag_q;

  char   *mapset;
  struct Map_info In, Net, Out;
  int    fdout, maskfd;
  int    row,col;
  struct Cell_head window;
  double gaussian;
  double N,E;
  CELL  *mask;
  DCELL *output_cell;
  double sigma, dmax, segmax, netmax, multip;
  
  double **coordinate;
  double sigmaOptimal;
  struct GModule *module;
  double dsize;
  double term;
  
  double gausmax = 0;

  /* Initialize the GIS calls */
  G_gisinit(argv[0]);

  module = G_define_module();
  module->description = 
      "Generates a raster density map from vector points data using a moving 2D isotropic Gaussian kernel or "
      "optionally generates a vector density map on vector network with a 1D kernel";

  in_opt = G_define_standard_option(G_OPT_V_INPUT);
  in_opt->description = "Input vector with training points";

  net_opt = G_define_standard_option(G_OPT_V_INPUT);
  net_opt->key         = "net";
  net_opt->description = "Input network vector";
  net_opt->required    = NO;

  out_opt              = G_define_option();
  out_opt->key         = "output";
  out_opt->type        = TYPE_STRING;
  out_opt->required    = YES;
  out_opt->description = "output raster/vector map";  

  stddev_opt              = G_define_option() ;
  stddev_opt->key         = "stddeviation";
  stddev_opt->type        = TYPE_DOUBLE;
  stddev_opt->required    = YES;
  stddev_opt->description = "stddeviation in map units";

  dsize_opt              = G_define_option() ;
  dsize_opt->key         = "dsize";
  dsize_opt->type        = TYPE_DOUBLE;
  dsize_opt->required    = NO;
  dsize_opt->description = "discretization error in map units" ;
  dsize_opt->answer      = "0.";

  segmax_opt              = G_define_option() ;
  segmax_opt->key         = "segmax";
  segmax_opt->type        = TYPE_DOUBLE;
  segmax_opt->required    = NO;
  segmax_opt->description = "maximum length of segment on network" ;
  segmax_opt->answer      = "100.";

  netmax_opt              = G_define_option() ;
  netmax_opt->key         = "distmax";
  netmax_opt->type        = TYPE_DOUBLE;
  netmax_opt->required    = NO;
  netmax_opt->description = "maximum distance from point to network" ;
  netmax_opt->answer      = "100.";

  multip_opt              = G_define_option() ;
  multip_opt->key         = "mult";
  multip_opt->type        = TYPE_DOUBLE;
  multip_opt->required    = NO;
  multip_opt->description = "multiply the density result by this number" ;
  multip_opt->answer      = "1.";

  flag_o              = G_define_flag();
  flag_o->key         = 'o';
  flag_o->description = "Try to calculate an optimal standard deviation with 'stddeviation' taken as maximum (experimental)";

  flag_q              = G_define_flag();
  flag_q->key         = 'q';
  flag_q->description = "Only calculate optimal standard deviation and exit (no map is written)";

  flag_v = G_define_flag();
  flag_v->key = 'v';
  flag_v->description = "Run verbosely";

  if (G_parser(argc, argv))
    exit(1);

  /*read options*/
  sigma = atof(stddev_opt->answer);
  dsize = atof(dsize_opt->answer);
  segmax = atof(segmax_opt->answer);
  netmax = atof(netmax_opt->answer);
  multip = atof(multip_opt->answer);
  verbose = flag_v->answer;

  if( flag_q->answer ) {
    flag_o->answer=1;
  }

  Vect_check_input_output_name ( in_opt->answer, out_opt->answer, GV_FATAL_EXIT );
  if (  net_opt->answer) {
      Vect_check_input_output_name ( net_opt->answer, out_opt->answer, GV_FATAL_EXIT );
  }

  G_get_window(&window);
  
  fprintf(stderr,"STDDEV: %f\nRES: %f\tROWS: %d\tCOLS: %d\n",
	  sigma, window.ew_res, window.rows, window.cols);

  /* Open input vector */
  if ((mapset = G_find_vector2 (in_opt->answer, "")) == NULL)
      G_fatal_error ( "Could not find input map '%s'\n", in_opt->answer);

  Vect_set_open_level (2);
  Vect_open_old (&In, in_opt->answer, mapset);


  if ( net_opt->answer) {
    int  nlines, line;
    int notreachable=0;
    struct line_pnts *Points;
    Points = Vect_new_line_struct ();
    net = 1;
    dimension=1.;
      /* Open input network */
      if ((mapset = G_find_vector2 (net_opt->answer, "")) == NULL)
	  G_fatal_error ( "Could not find network input map '%s'\n", net_opt->answer);

      Vect_set_open_level (2);
      Vect_open_old (&Net, net_opt->answer, mapset);
      Vect_net_build_graph ( &Net, GV_LINES, 0, 0, NULL, NULL, NULL, 0, 0 );

      if( !flag_q->answer ) {
	  Vect_open_new (&Out, out_opt->answer, 0);
	  Vect_hist_command ( &Out );
      }
      
      /* verify not reachable points */      
      nlines = Vect_get_num_lines(&In);
      for ( line = 1; line <= nlines; line++){
	int  ltype;
	ltype = Vect_read_line (&In, Points, NULL, line);
	if ( !(ltype & GV_POINTS ) ) continue;
	if(Vect_find_line ( &Net, Points->x[0], Points->y[0] , 0.0, GV_LINES, netmax, 0, 0 ) ==0)  notreachable++;
      }
      if(notreachable > 0)  G_warning("%d points outside treshold",notreachable);		
  } else {
      /* check and open the name of output map */
      if( !flag_q->answer ) {
	  if(G_legal_filename( out_opt->answer ) < 0)
	    G_fatal_error("illegal file name [%s]", out_opt->answer);
	 
	  G_set_fp_type (DCELL_TYPE);
	  if((fdout = G_open_raster_new(out_opt->answer,DCELL_TYPE)) < 0)
	    G_fatal_error("error opening raster map [%s]", out_opt->answer);

	  /* open mask file */
	  if ((maskfd = G_maskfd()) >= 0)
	    mask = G_allocate_cell_buf();
	  else
	    mask = NULL;

	  /* allocate output raster */
	  output_cell=G_allocate_raster_buf(DCELL_TYPE);
      }
  }
  


  /* valutazione distanza ottimale */ 
  if ( flag_o->answer ) {

    /* Note: sigmaOptimal calculates using ALL points (also those outside the region) */ 

    fprintf (stderr, "Automatic choose of smoothing parameter (standard deviation), maximum possible "
	             "value of standard deviation is was set to %f\n", sigma);     

    /* maximum distance 4*sigma (3.9*sigma ~ 1.0000), keep it small, otherwise it takes 
     * too much points and calculation on network becomes slow */
    dmax = 4*sigma; /* used as maximum value */

    fprintf (stderr, "Using maximum distance between points: %f\n", dmax);     
    
    if ( net_opt->answer ) {
      npoints = Vect_get_num_primitives(&In,GV_POINTS);
      /* Warning: each distance is registered twice (both directions) */     
      ndists = compute_all_net_distances(&In,&Net,netmax,&dists,dmax);
    } else {
      /* Read points */
      npoints = read_points ( &In, &coordinate, dsize );
      ndists = compute_all_distances(coordinate,&dists,npoints,dmax);
    }
    
    fprintf (stderr, "Number of input points: %d \n", npoints); 
    fprintf (stderr, "%d distances read from the map\n", ndists);     

    if(ndists ==0) G_fatal_error("distances between all points are beyond %e (4 * standard deviation) cannot calculate optimal value",dmax) ;
    
    
    /*  double iii;
	for ( iii = 1.; iii <= 10000; iii++){
	fprintf(stderr,"i=%f v=%.16f \n",iii,R(iii));
	}*/
    
    
    
    /* sigma is used in brent as maximum possible value for sigmaOptimal */
    sigmaOptimal = brent_iterate( L, 0.0, sigma, 1000);
    


    fprintf (stderr, "Optimal smoothing parameter (standard deviation): %f\n", sigmaOptimal);     
    
    /* Reset sigma to calculated optimal value */
    sigma=sigmaOptimal;
    
    if( flag_q->answer ) {
      Vect_close (&In);
      if ( net_opt->answer )
	Vect_close (&Net);
      
      exit (0);
    }
  }
  
  term=1./(pow(sigma,dimension)*pow((2.*M_PI),dimension/2.));  
  dmax= sigma*4.;


  if ( net ) {
      int line, nlines;
      struct line_pnts *Points, *SPoints;
      struct line_cats *SCats;

      fprintf (stderr, "\nWriting output vector file using smooth parameter=%f\n",sigma);
      fprintf (stderr, "\nNormalising factor=%f\n",1./gaussianFunction(sigma/4.,sigma,dimension));

      /* Divide lines to segments and calculate gaussian for center of each segment */
      
      Points = Vect_new_line_struct ();
      SPoints = Vect_new_line_struct ();
      SCats = Vect_new_cats_struct ();
      
      nlines = Vect_get_num_lines(&Net);
      G_debug (3, "net nlines = %d", nlines);

      for ( line = 1; line <= nlines; line++){
	  int    seg, nseg, ltype;
	  double llength, length, x, y;
	  
	  ltype = Vect_read_line (&Net, Points, NULL, line);
	  if ( !(ltype & GV_LINES ) ) continue;
	  
	  llength = Vect_line_length (Points);
	  nseg = (int) (1 + llength / segmax);
	  length = llength / nseg;

	  G_debug (3, "net line = %d, nseg = %d, seg length = %f", line, nseg, length);

	  for ( seg = 0; seg < nseg; seg++ ) {
	      double offset1, offset2;

	      offset1 = (seg + 0.5) * length; 
	      Vect_point_on_line ( Points, offset1, &x, &y, NULL, NULL, NULL);

	      G_debug (3, "  segment = %d, offset = %f, xy = %f %f", seg, offset1, x, y);

	      compute_net_distance ( x, y, &In, &Net, netmax, sigma, term, &gaussian, dmax );
	      gaussian *= multip;
	      if ( gaussian > gausmax ) gausmax = gaussian;

	      G_debug (3, "  gaussian = %f", gaussian);

	      /* Write segment */
	      if ( gaussian > 0 ) {
		  offset1 = seg * length;
		  offset2 = (seg + 1) * length;
	          if ( offset2 > llength ) offset2 = llength;
		  Vect_line_segment ( Points, offset1, offset2, SPoints ); 
		
                  /* TODO!!! remove later
                  if ( SPoints->n_points > 0 ) 
 		      Vect_append_point( SPoints, SPoints->x[SPoints->n_points-1], 
                                         SPoints->y[SPoints->n_points-1], 0 );
                  */
		  Vect_reset_cats ( SCats );
		  Vect_cat_set ( SCats, 1, (int) gaussian );

		  Vect_write_line ( &Out, GV_LINE, SPoints, SCats );
	      }
	  }
	  G_percent ( line, nlines, 1 );
      }	

      Vect_close (&Net);

      Vect_build (&Out, stderr);
      Vect_close (&Out);
  } else { 
      fprintf (stderr, "\nWriting output raster file using smooth parameter=%f\n",sigma);
      fprintf (stderr, "\nNormalising factor=%f\n",1./gaussianFunction(sigma/4.,sigma,dimension));
      for(row=0; row<window.rows; row++){
	G_percent(row,window.rows,2);
	if (mask)
	  {
	    if(G_get_map_row(maskfd, mask, row) < 0)
	      G_fatal_error("error reading MASK");
	  }
	
	for(col=0; col<window.cols; col++) {
	  /* don't interpolate outside of the mask */
	  if (mask && mask[col] == 0)
	    {
	      G_set_d_null_value(&output_cell[col], 1);
	      continue;
	    }     

	  N = G_row_to_northing(row+0.5,&window);
	  E = G_col_to_easting(col+0.5,&window);
	  
	  compute_distance ( N, E, &In, sigma, term, &gaussian,dmax );
	  output_cell[col] = multip * gaussian;      
	  if ( gaussian > gausmax ) gausmax = gaussian;
	}
	G_put_raster_row(fdout,output_cell,DCELL_TYPE);  
      }
      
      G_close_cell(fdout);
  }

  fprintf (stderr, "Maximum value in output: %e\n", gausmax);

  Vect_close (&In);

  exit(0);
}

/* Read points to array return number of points */
int read_points( struct Map_info *In, double ***coordinate, double dsize)
{
  int    line, nlines, npoints, ltype, i = 0;
  double **xySites;
  static struct line_pnts *Points = NULL;
  
  if (!Points)
      Points = Vect_new_line_struct ();
  
  /* Allocate array of pointers */
  npoints = Vect_get_num_primitives(In,GV_POINT);
  xySites = (double **) G_calloc ( npoints, sizeof(double*) );
  
  nlines = Vect_get_num_lines(In);

  for ( line = 1; line <= nlines; line++){
      ltype = Vect_read_line (In, Points, NULL, line);
      if ( !(ltype & GV_POINT ) ) continue;
      
      xySites[i] = (double *) G_calloc (2,sizeof(double));
      
      xySites[i][0] = Points->x[0];
      xySites[i][1] = Points->y[0]; 
      i++;
  }	

  *coordinate = xySites;

  return (npoints);
}

/* Calculate distances < dmax between all sites in coordinate 
 * Return: number of distances in dists */
double compute_all_distances(double **coordinate, double **dists, int n, double dmax)
{
  int ii,jj,kk;
  int nn;

  nn = n*(n-1)/2;
  *dists = (double *) G_calloc(nn,sizeof(double));  
  kk=0;

  for(ii=0; ii < n-1; ii++){
    for(jj=ii+1; jj<n; jj++){
      double dist;

      dist = euclidean_distance(coordinate[ii],coordinate[jj],2);
      G_debug (3, "dist = %f", dist);

      if ( dist <= dmax ) {
          (*dists)[kk] = dist;
	  kk++;
      }
    }
  }

  return (kk);
}

/* Calculate distances < dmax between all sites in coordinate 
 * Return: number of distances in dists */
double compute_all_net_distances( struct Map_info *In, struct Map_info *Net, 
	                          double netmax, double **dists, double dmax)
{
  int   nn, kk, nalines, aline;
  double dist;
  struct line_pnts *APoints, *BPoints;
  BOUND_BOX box;
  struct ilist *List;

  APoints = Vect_new_line_struct ();
  BPoints = Vect_new_line_struct ();
  List = Vect_new_list ();
  
  nn = Vect_get_num_primitives(In,GV_POINTS);
  nn = nn*(nn-1);
  *dists = (double *) G_calloc(nn,sizeof(double));  
  kk=0;

  nalines = Vect_get_num_lines(In);
  for ( aline = 1; aline <= nalines; aline++){
      int   i, altype;
      
      G_debug (3, "  aline = %d", aline);

      altype = Vect_read_line (In, APoints, NULL, aline);
      if ( !(altype & GV_POINTS ) ) continue;

      box.E = APoints->x[0] + dmax; box.W = APoints->x[0] - dmax;
      box.N = APoints->y[0] + dmax; box.S = APoints->y[0] - dmax;
      box.T = PORT_DOUBLE_MAX; box.B = -PORT_DOUBLE_MAX;

      Vect_select_lines_by_box ( In, &box, GV_POINT, List);
      G_debug (3, "  %d points in box", List->n_values);

      for ( i = 0; i < List->n_values; i++){
	  int bline, ret;

	  bline = List->value[i];

	  if ( bline == aline ) continue;
	  
          G_debug (3, "    bline = %d", bline);
	  Vect_read_line (In, BPoints, NULL, bline);

	  ret = Vect_net_shortest_path_coor ( Net, APoints->x[0], APoints->y[0], 0.0, 
		                              BPoints->x[0], BPoints->y[0], 0.0, 
					      netmax, netmax, &dist, NULL, NULL, NULL, 
					      NULL, NULL, NULL );

          G_debug (3, "  SP: %f %f -> %f %f", APoints->x[0], APoints->y[0], BPoints->x[0], BPoints->y[0]);
		  
	  if ( ret == 0 ) {
	    G_debug (3, "not reachable");
	    continue; /* Not reachable */
	  } 

	  G_debug (3, "  dist = %f", dist);

	  if ( dist <= dmax ) {
	      (*dists)[kk] = dist;
	      kk++;
	  }
	  G_debug (3, "  kk = %d", kk);
      }
  }

  return (kk);
}

/* Compute gausian for x, y along Net, using all points in In */
void compute_net_distance( double x, double y, struct Map_info *In, struct Map_info *Net, double netmax, 
	               double sigma, double term, double *gaussian, double dmax)
{  
  int    i;
  double dist;
  static struct line_pnts *Points = NULL;
  BOUND_BOX box;
  static struct ilist *List = NULL;
  
  if (!Points)
      Points = Vect_new_line_struct ();

  if (!List)
      List = Vect_new_list ();

  *gaussian=.0;  

  
  /* The network is usually much bigger than dmax and to calculate shortest path is slow
   * -> use spatial index to select points */ 
  box.E = x + dmax; box.W = x - dmax;
  box.N = y + dmax; box.S = y - dmax;
  box.T = PORT_DOUBLE_MAX; box.B = -PORT_DOUBLE_MAX;

  Vect_select_lines_by_box ( In, &box, GV_POINT, List);
  G_debug (3, "  %d points in box", List->n_values);

  for ( i = 0; i < List->n_values; i++){
      int line, ret;

      line = List->value[i];
      Vect_read_line (In, Points, NULL, line);

      G_debug (3, "  SP: %f %f -> %f %f", x, y, Points->x[0], Points->y[0]);
      ret = Vect_net_shortest_path_coor ( Net, x, y, 0.0, Points->x[0], Points->y[0], 0.0, 
	                                  netmax, netmax, &dist, NULL, NULL, NULL,
					  NULL, NULL, NULL );
	      
      if ( ret == 0 ) {
	G_debug (3, "not reachable");
	continue; /* Not reachable */
      } 

      if(dist<=dmax)
	*gaussian += gaussianKernel(dist/sigma,term);   

      G_debug (3, "  dist = %f gaussian = %f", dist, *gaussian);
  }

}

void compute_distance( double N, double E, struct Map_info *In, 
	               double sigma, double term, double *gaussian, double dmax)
{  
  int    line, nlines, ltype;
  double a[2],b[2];
  double dist;
  static struct line_pnts *Points = NULL;
  
  if (!Points)
      Points = Vect_new_line_struct ();

  a[0] = E;
  a[1] = N;

  *gaussian=.0;  
  
  nlines = Vect_get_num_lines(In);

  /* TODO ? : use spatial index */
  for ( line = 1; line <= nlines; line++){
      ltype = Vect_read_line (In, Points, NULL, line);
      if ( !(ltype & GV_POINT ) ) continue;

      b[0] = Points->x[0];
      b[1] = Points->y[0];

      dist = euclidean_distance(a,b,2);
      
      if(dist<=dmax) 
	*gaussian += gaussianKernel(dist/sigma,term);    

  }

}