File: eigen.c

package info (click to toggle)
grass 6.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 104,028 kB
  • ctags: 40,409
  • sloc: ansic: 419,980; python: 63,559; tcl: 46,692; cpp: 29,791; sh: 18,564; makefile: 7,000; xml: 3,505; yacc: 561; perl: 559; lex: 480; sed: 70; objc: 7
file content (147 lines) | stat: -rw-r--r-- 2,750 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/* taken from i.pca */

#include <stdlib.h>
#include <grass/gmath.h>
#include <grass/gis.h>


static int egcmp(const void *pa, const void *pb);


/*!
 * \fn int eigen (double **M, double **Vectors, double *lambda, int n)
 *
 * \brief Computes eigenvalues (and eigen vectors if desired) for
 * symmetric matices.
 *
 * Computes eigenvalues (and eigen vectors if desired) for symmetric matices.
 *
 * \param M Input matrix
 * \param Vectors eigen output vector matrix
 * \param lambda Output eigenvalues
 * \param n Input matrix dimension
 * \return int
 */

int eigen(double **M,		/* Input matrix */
	  double **Vectors,	/* eigen vector matrix -output */
	  double *lambda,	/* Output eigenvalues */
	  int n			/* Input matrix dimension */
    )
{
    int i, j;
    double **a, *e;

    a = G_alloc_matrix(n, n);
    e = G_alloc_vector(n);

    for (i = 0; i < n; i++)
	for (j = 0; j < n; j++)
	    a[i][j] = M[i][j];

    G_tred2(a, n, lambda, e);
    G_tqli(lambda, e, n, a);

    /* Returns eigenvectors */
    if (Vectors)
	for (i = 0; i < n; i++)
	    for (j = 0; j < n; j++)
		Vectors[i][j] = a[i][j];

    G_free_matrix(a);
    G_free_vector(e);

    return 0;
}


/*!
 * \fn int egvorder2 (double *d, double **z, long bands)
 *
 * \brief
 *
 * Returns 0.
 *
 * \param d
 * \param z
 * \param bands
 * \return int
 */

int egvorder2(double *d, double **z, long bands)
{
    double *buff;
    double **tmp;
    int i, j;

    /* allocate temporary matrix */
    buff = (double *)G_malloc(bands * (bands + 1) * sizeof(double));
    tmp = (double **)G_malloc(bands * sizeof(double *));
    for (i = 0; i < bands; i++)
	tmp[i] = &buff[i * (bands + 1)];

    /* concatenate (vertically) z and d into tmp */
    for (i = 0; i < bands; i++) {
	for (j = 0; j < bands; j++)
	    tmp[i][j + 1] = z[j][i];
	tmp[i][0] = d[i];
    }

    /* sort the combined matrix */
    qsort(tmp, bands, sizeof(double *), egcmp);

    /* split tmp into z and d */
    for (i = 0; i < bands; i++) {
	for (j = 0; j < bands; j++)
	    z[j][i] = tmp[i][j + 1];
	d[i] = tmp[i][0];
    }

    /* free temporary matrix */
    G_free(tmp);
    G_free(buff);

    return 0;
}


/*!
 * \fn int transpose2 (double **eigmat, long bands)
 *
 * \brief
 *
 * Returns 0.
 *
 * \param eigmat
 * \param bands
 * \return int
 */

int transpose2(double **eigmat, long bands)
{
    int i, j;

    for (i = 0; i < bands; i++)
	for (j = 0; j < i; j++) {
	    double tmp = eigmat[i][j];

	    eigmat[i][j] = eigmat[j][i];
	    eigmat[j][i] = tmp;
	}

    return 0;
}


static int egcmp(const void *pa, const void *pb)
{
    const double *a = *(const double *const *)pa;
    const double *b = *(const double *const *)pb;

    if (*a > *b)
	return -1;
    if (*a < *b)
	return 1;

    return 0;
}