File: GS_util.c

package info (click to toggle)
grass 6.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 104,028 kB
  • ctags: 40,409
  • sloc: ansic: 419,980; python: 63,559; tcl: 46,692; cpp: 29,791; sh: 18,564; makefile: 7,000; xml: 3,505; yacc: 561; perl: 559; lex: 480; sed: 70; objc: 7
file content (486 lines) | stat: -rw-r--r-- 8,248 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/*!
   \file GS_util.c

   \brief OGSF library - loading and manipulating surfaces

   GRASS OpenGL gsurf OGSF Library 

   (C) 1999-2008 by the GRASS Development Team

   This program is free software under the 
   GNU General Public License (>=v2). 
   Read the file COPYING that comes with GRASS
   for details.

   \author Bill Brown USACERL, GMSL/University of Illinois
   \author Doxygenized by Martin Landa <landa.martin gmail.com> (May 2008)
 */

#include <stdlib.h>
#include <math.h>
#include <string.h>

#include <grass/gis.h>
#include <grass/gstypes.h>

/*!
   \brief Calculate distance between 2 coordinates

   Units is one of:
   - "meters",
   - "miles",
   - "kilometers",
   - "feet",
   - "yards",
   - "nmiles" (nautical miles),
   - "rods",
   - "inches",
   - "centimeters",
   - "millimeters",
   - "micron",
   - "nanometers",
   - "cubits",
   - "hands",
   - "furlongs",
   - "chains"

   Default is meters.

   \param from starting point
   \param to ending point
   \param units map units

   \return distance between two geographic coordinates in current projection
 */
double GS_geodistance(double *from, double *to, const char *units)
{
    double meters;

    meters = Gs_distance(from, to);

    if (!units) {
	return (meters);
    }

    if (strcmp(units, "meters") == 0) {
	return (meters);
    }

    if (strcmp(units, "miles") == 0) {
	return (meters * .0006213712);
    }

    if (strcmp(units, "kilometers") == 0) {
	return (meters * .001);
    }

    if (strcmp(units, "feet") == 0) {
	return (meters * 3.280840);
    }

    if (strcmp(units, "yards") == 0) {
	return (meters * 1.093613);
    }

    if (strcmp(units, "rods") == 0) {
	return (meters * .1988388);
    }

    if (strcmp(units, "inches") == 0) {
	return (meters * 39.37008);
    }

    if (strcmp(units, "centimeters") == 0) {
	return (meters * 100.0);
    }

    if (strcmp(units, "millimeters") == 0) {
	return (meters * 1000.0);
    }

    if (strcmp(units, "micron") == 0) {
	return (meters * 1000000.0);
    }

    if (strcmp(units, "nanometers") == 0) {
	return (meters * 1000000000.0);
    }

    if (strcmp(units, "cubits") == 0) {
	return (meters * 2.187227);
    }

    if (strcmp(units, "hands") == 0) {
	return (meters * 9.842520);
    }

    if (strcmp(units, "furlongs") == 0) {
	return (meters * .004970970);
    }

    if (strcmp(units, "nmiles") == 0) {
	/* nautical miles */
	return (meters * .0005399568);
    }

    if (strcmp(units, "chains") == 0) {
	return (meters * .0497097);
    }

    return (meters);
}

/*!
   \brief Calculate distance

   \param from 'from' point (X,Y,Z)
   \param to 'to' point (X,Y,Z)

   \return distance
 */
float GS_distance(float *from, float *to)
{
    float x, y, z;

    x = from[X] - to[X];
    y = from[Y] - to[Y];
    z = from[Z] - to[Z];

    return (float)sqrt(x * x + y * y + z * z);
}

/*!
   \brief Calculate distance in plane

   \param from 'from' point (X,Y)
   \param to 'to' point (X,Y)

   \return distance
 */
float GS_P2distance(float *from, float *to)
{
    float x, y;

    x = from[X] - to[X];
    y = from[Y] - to[Y];

    return (float)sqrt(x * x + y * y);
}

/*!
   \brief Copy vector values

   v1 = v2

   \param[out] v1 first vector
   \param v2 second vector
 */
void GS_v3eq(float *v1, float *v2)
{
    v1[X] = v2[X];
    v1[Y] = v2[Y];
    v1[Z] = v2[Z];

    return;
}

/*!
   \brief Sum vectors

   v1 += v2

   \param[in,out] v1 first vector
   \param v2 second vector
 */
void GS_v3add(float *v1, float *v2)
{
    v1[X] += v2[X];
    v1[Y] += v2[Y];
    v1[Z] += v2[Z];

    return;
}

/*!
   \brief Subtract vectors

   v1 -= v2

   \param[in,out] v1 first vector
   \param v2 second vector
 */
void GS_v3sub(float *v1, float *v2)
{
    v1[X] -= v2[X];
    v1[Y] -= v2[Y];
    v1[Z] -= v2[Z];

    return;
}

/*!
   \brief Multiple vectors

   v1 *= k

   \param[in,out] v1 vector
   \param k multiplicator
 */
void GS_v3mult(float *v1, float k)
{
    v1[X] *= k;
    v1[Y] *= k;
    v1[Z] *= k;

    return;
}

/*!
   \brief Change v1 so that it is a unit vector (2D)

   \param[in,out] v1 vector

   \return 0 if magnitude of v1 is zero
   \return 1 if magnitude of v1 > 0
 */
int GS_v3norm(float *v1)
{
    float n;

    n = sqrt(v1[X] * v1[X] + v1[Y] * v1[Y] + v1[Z] * v1[Z]);

    if (n == 0.0) {
	return (0);
    }

    v1[X] /= n;
    v1[Y] /= n;
    v1[Z] /= n;

    return (1);
}

/*!
   \brief Change v1 so that it is a unit vector (3D)

   \param[in,out] v1 vector

   \return 0 if magnitude of v1 is zero
   \return 1 if magnitude of v1 > 0
 */
int GS_v2norm(float *v1)
{
    float n;

    n = sqrt(v1[X] * v1[X] + v1[Y] * v1[Y]);

    if (n == 0.0) {
	return (0);
    }

    v1[X] /= n;
    v1[Y] /= n;

    return (1);
}

/*!
   \brief Changes v1 so that it is a unit vector

   \param dv1 vector

   \return 0 if magnitude of dv1 is zero
   \return 1 if magnitude of dv1 > 0
 */
int GS_dv3norm(double *dv1)
{
    double n;

    n = sqrt(dv1[X] * dv1[X] + dv1[Y] * dv1[Y] + dv1[Z] * dv1[Z]);

    if (n == 0.0) {
	return (0);
    }

    dv1[X] /= n;
    dv1[Y] /= n;
    dv1[Z] /= n;

    return (1);
}


/*!
   \brief Change v2 so that v1v2 is a unit vector

   \param v1 first vector
   \param v2[in,out] second vector

   \return 0 if magnitude of dx is zero
   \return 1 if magnitude of dx > 0
 */
int GS_v3normalize(float *v1, float *v2)
{
    float n, dx, dy, dz;

    dx = v2[X] - v1[X];
    dy = v2[Y] - v1[Y];
    dz = v2[Z] - v1[Z];
    n = sqrt(dx * dx + dy * dy + dz * dz);

    if (n == 0.0) {
	return (0);
    }

    v2[X] = v1[X] + dx / n;
    v2[Y] = v1[Y] + dy / n;
    v2[Z] = v1[Z] + dz / n;

    return (1);
}


/*!
   \brief Get a normalized direction from v1 to v2, store in v3

   \param v1 first vector
   \param v2 second vector
   \param[out] v3 output vector

   \return 0 if magnitude of dx is zero
   \return 1 if magnitude of dx > 0
 */
int GS_v3dir(float *v1, float *v2, float *v3)
{
    float n, dx, dy, dz;

    dx = v2[X] - v1[X];
    dy = v2[Y] - v1[Y];
    dz = v2[Z] - v1[Z];
    n = sqrt(dx * dx + dy * dy + dz * dz);

    if (n == 0.0) {
	v3[X] = v3[Y] = v3[Z] = 0.0;
	return (0);
    }

    v3[X] = dx / n;
    v3[Y] = dy / n;
    v3[Z] = dz / n;

    return (1);
}


/*!
   \brief Get a normalized direction from v1 to v2, store in v3 (2D)

   \param v1 first vector
   \param v2 second vector
   \param[out] v3 output vector

   \return 0 if magnitude of dx is zero
   \return 1 if magnitude of dx > 0
 */
void GS_v2dir(float *v1, float *v2, float *v3)
{
    float n, dx, dy;

    dx = v2[X] - v1[X];
    dy = v2[Y] - v1[Y];
    n = sqrt(dx * dx + dy * dy);

    v3[X] = dx / n;
    v3[Y] = dy / n;

    return;
}

/*!
   \brief Get the cross product v3 = v1 cross v2

   \param v1 first vector
   \param v2 second vector
   \param[out] v3 output vector
 */
void GS_v3cross(float *v1, float *v2, float *v3)
{
    v3[X] = (v1[Y] * v2[Z]) - (v1[Z] * v2[Y]);
    v3[Y] = (v1[Z] * v2[X]) - (v1[X] * v2[Z]);
    v3[Z] = (v1[X] * v2[Y]) - (v1[Y] * v2[X]);

    return;
}

/*!
   \brief Magnitude of vector

   \param v1 vector
   \param[out] mag magnitude value
 */
void GS_v3mag(float *v1, float *mag)
{
    *mag = sqrt(v1[X] * v1[X] + v1[Y] * v1[Y] + v1[Z] * v1[Z]);

    return;
}

/*!
   \brief ADD

   Initialize by calling with a number nhist to represent number of
   previous entrys to check, then call with zero as nhist

   \param p1 first point
   \param p2 second point
   \param nhist ?

   \return -1 on error
   \return -2
   \return 1
   \return 9
 */
int GS_coordpair_repeats(float *p1, float *p2, int nhist)
{
    static float *entrys = NULL;
    static int next = 0;
    static int len = 0;
    int i;

    if (nhist) {
	if (entrys) {
	    G_free(entrys);
	}

	entrys = (float *)G_malloc(4 * nhist * sizeof(float));

	if (!entrys)
	    return (-1);

	len = nhist;
	next = 0;
    }

    if (!len) {
	return (-2);
    }

    for (i = 0; i < next; i += 4) {
	if (entrys[i] == p1[0] && entrys[i + 1] == p1[1]
	    && entrys[i + 2] == p2[0] && entrys[i + 3] == p2[1]) {
	    return (1);
	}
    }

    if (len == next / 4) {
	next = 0;
    }

    entrys[next] = p1[0];
    entrys[next + 1] = p1[1];
    entrys[next + 2] = p2[0];
    entrys[next + 3] = p2[1];
    next += 4;

    return (0);
}