1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
/*-
*
* Original program and various modifications:
* Lubos Mitas
*
* GRASS4.1 version of the program and GRASS4.2 modifications:
* H. Mitasova,
* I. Kosinovsky, D. Gerdes
* D. McCauley
*
* Copyright 1993, 1995:
* L. Mitas ,
* H. Mitasova,
* I. Kosinovsky,
* D.Gerdes
* D. McCauley
*
* modified by McCauley in August 1995
* modified by Mitasova in August 1995, Nov. 1996
* bug fixes(mask) and modif. for variable smoothing Mitasova Jan 1997
*
*/
#include <stdio.h>
#include <math.h>
#include <unistd.h>
#include <grass/gis.h>
#include <grass/glocale.h>
#include <grass/bitmap.h>
#include <grass/interpf.h>
#define CEULER .57721566
int IL_grid_calc_2d(struct interp_params *params, struct quaddata *data, /* given segment */
struct BM *bitmask, /* bitmask */
double zmin, double zmax, /* min and max input z-values */
double *zminac, double *zmaxac, /* min and max interp. z-values */
double *gmin, double *gmax, /* min and max inperp. slope val. */
double *c1min, double *c1max, double *c2min, double *c2max, /* min and max interp. curv. val. */
double *ertot, /* total interplating func. error */
double *b, /* solutions of linear equations */
int offset1, /* offset for temp file writing */
double dnorm)
/*
* Calculates grid for the given segment represented by data (contains
* n_rows, n_cols, ew_res,ns_res, and all points inside + overlap) using
* solutions of system of lin. equations and interpolating functions
* interp() and interpder(). Also calls secpar() to compute slope, aspect
* and curvatures if required.
*/
{
/*
* C C INTERPOLATION BY FUNCTIONAL METHOD : TPS + complete regul.
* c
*/
double x_or = data->x_orig;
double y_or = data->y_orig;
int n_rows = data->n_rows;
int n_cols = data->n_cols;
int n_points = data->n_points;
struct triple *points;
static double *w2 = NULL;
static double *w = NULL;
int cond1, cond2;
double r;
double stepix, stepiy, xx, xg, yg, xx2;
double rfsta2, /* cons, cons1, */ wm, dx, dy, dxx, dyy, dxy, h, bmgd1,
bmgd2;
double r2, gd1, gd2; /* for interpder() */
int n1, k, l, m;
int ngstc, nszc, ngstr, nszr;
double zz;
int bmask = 1;
static int first_time_z = 1;
int offset, offset2;
double fstar2 = params->fi * params->fi / 4.;
double tfsta2, tfstad;
double ns_res, ew_res;
double rsin = 0, rcos = 0, teta, scale = 0; /*anisotropy parameters - added by JH 2002 */
double xxr, yyr;
if (params->theta) {
teta = params->theta / 57.295779; /* deg to rad */
rsin = sin(teta);
rcos = cos(teta);
}
if (params->scalex)
scale = params->scalex;
ns_res = (((struct quaddata *)(data))->ymax -
((struct quaddata *)(data))->y_orig) / data->n_rows;
ew_res = (((struct quaddata *)(data))->xmax -
((struct quaddata *)(data))->x_orig) / data->n_cols;
/* tfsta2 = fstar2 * 2.; modified after removing normalization of z */
tfsta2 = (fstar2 * 2.) / dnorm;
tfstad = tfsta2 / dnorm;
points = data->points;
/*
* normalization
*/
stepix = ew_res / dnorm;
stepiy = ns_res / dnorm;
cond2 = ((params->adxx != NULL) || (params->adyy != NULL) ||
(params->adxy != NULL));
cond1 = ((params->adx != NULL) || (params->ady != NULL) || cond2);
if (!w) {
if (!(w = (double *)G_malloc(sizeof(double) * (params->KMAX2 + 9)))) {
G_warning(_("Out of memory"));
return -1;
}
}
if (!w2) {
if (!(w2 = (double *)G_malloc(sizeof(double) * (params->KMAX2 + 9)))) {
G_warning(_("Out of memory"));
return -1;
}
}
n1 = n_points + 1;
/*
* C C INTERPOLATION * MOST INNER LOOPS ! C
*/
ngstc = (int)(x_or / ew_res + 0.5) + 1;
nszc = ngstc + n_cols - 1;
ngstr = (int)(y_or / ns_res + 0.5) + 1;
nszr = ngstr + n_rows - 1;
for (k = ngstr; k <= nszr; k++) {
offset = offset1 * (k - 1); /* rows offset */
yg = (k - ngstr) * stepiy + stepiy / 2.; /* fixed by J.H. in July 01 */
for (m = 1; m <= n_points; m++) {
wm = yg - points[m - 1].y;
w[m] = wm;
w2[m] = wm * wm;
}
for (l = ngstc; l <= nszc; l++) {
if (bitmask != NULL)
/* if(params->maskmap != NULL) PK Apr 03 MASK support */
bmask = BM_get(bitmask, l - 1, k - 1); /*fixed by helena jan 97 */
/* if(bmask==0 || bmask==-1) fprintf(stderr, "bmask=%d, at (%d,%d)\n", bmask, l, k); */
xg = (l - ngstc) * stepix + stepix / 2.; /*fixed by J.H. in July 01 */
dx = 0.;
dy = 0.;
dxx = 0.;
dyy = 0.;
dxy = 0.;
zz = 0.;
if (bmask == 1) { /* compute everything for area which is
* not masked out */
h = b[0];
for (m = 1; m <= n_points; m++) {
xx = xg - points[m - 1].x;
if ((params->theta) && (params->scalex)) {
/* we run anisotropy */
xxr = xx * rcos + w[m] * rsin;
yyr = w[m] * rcos - xx * rsin;
xx2 = xxr * xxr;
w2[m] = yyr * yyr;
r2 = scale * xx2 + w2[m];
r = r2;
rfsta2 = scale * xx2 + w2[m];
}
else {
xx2 = xx * xx;
r2 = xx2 + w2[m];
r = r2;
rfsta2 = xx2 + w2[m];
}
h = h + b[m] * params->interp(r, params->fi);
if (cond1) {
if (!params->interpder(r, params->fi, &gd1, &gd2))
return -1;
bmgd1 = b[m] * gd1;
dx = dx + bmgd1 * xx;
dy = dy + bmgd1 * w[m];
if (cond2) {
bmgd2 = b[m] * gd2;
dxx = dxx + bmgd2 * xx2 + bmgd1;
dyy = dyy + bmgd2 * w2[m] + bmgd1;
dxy = dxy + bmgd2 * xx * w[m];
}
}
}
/* zz = (h * dnorm) + zmin; replaced by helena jan. 97 due to removing norma
lization of z and zm in segmen2d.c */
zz = h + zmin;
if (first_time_z) {
first_time_z = 0;
*zmaxac = *zminac = zz;
}
*zmaxac = amax1(zz, *zmaxac);
*zminac = amin1(zz, *zminac);
if ((zz > zmax + 0.1 * (zmax - zmin))
|| (zz < zmin - 0.1 * (zmax - zmin))) {
static int once = 0;
if (!once) {
once = 1;
G_warning(_("Overshoot - increase in tension suggested. "
"Overshoot occures at (%d,%d) cell. "
"Z-value %f, zmin %f, zmax %f."),
l, k, zz, zmin, zmax);
}
}
params->az[l] = (FCELL) zz;
if (cond1) {
params->adx[l] = (FCELL) (-dx * tfsta2);
params->ady[l] = (FCELL) (-dy * tfsta2);
if (cond2) {
params->adxx[l] = (FCELL) (-dxx * tfstad);
params->adyy[l] = (FCELL) (-dyy * tfstad);
params->adxy[l] = (FCELL) (-dxy * tfstad);
}
}
}
else {
G_set_d_null_value(params->az + l, 1);
/* fprintf (stderr, "zz=%f, az[l]=%f, c=%d\n", zz, params->az[l], l); */
if (cond1) {
G_set_d_null_value(params->adx + l, 1);
G_set_d_null_value(params->ady + l, 1);
if (cond2) {
G_set_d_null_value(params->adxx + l, 1);
G_set_d_null_value(params->adyy + l, 1);
G_set_d_null_value(params->adxy + l, 1);
}
}
}
}
if (cond1 && (params->deriv != 1)) {
if (params->secpar(params, ngstc, nszc, k, bitmask,
gmin, gmax, c1min, c1max, c2min, c2max, cond1,
cond2) < 0)
return -1;
}
offset2 = (offset + ngstc - 1) * sizeof(FCELL);
if (params->wr_temp(params, ngstc, nszc, offset2) < 0)
return -1;
}
return 1;
}
|