1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*
****************************************************************************
*
* MODULE: Vector library
*
* AUTHOR(S): Original author CERL, probably Dave Gerdes.
* Update to GRASS 5.7 Radim Blazek.
*
* PURPOSE: Lower level functions for reading/writing/manipulating vectors.
*
* COPYRIGHT: (C) 2001 by the GRASS Development Team
*
* This program is free software under the GNU General Public
* License (>=v2). Read the file COPYING that comes with GRASS
* for details.
*
*****************************************************************************/
#include <stdio.h>
/***************************************************************
* test_for_intersection (ax1,ay1,ax2,ay2,bx1,by1,bx2,by2)
* double ax1,ax2,ay1,ay2;
* double bx1,bx2,by1,by2;
*
* returns
* 0 no intersection at all
* 1 the line segments intersect at only one point
* -1 the line segments intersect at many points, i.e., overlapping
* segments from the same line
*
* find_intersection (ax1,ay1,ax2,ay2,bx1,by1,bx2,by2,x,y)
* double ax1,ax2,ay1,ay2;
* double bx1,bx2,by1,by2;
* double *x,*y;
*
* returns
* 0 no intersection
* 1 x,y set to (unique) intersection
* -1 lines overlap, no unique intersection
*
* Based on the following:
*
* (ax2-ax1)r1 - (bx2-bx1)r2 = ax2 - ax1
* (ay2-ay1)r1 - (by2-by1)r2 = ay2 - ay1
*
* Solving for r1 and r2, if r1 and r2 are between 0 and 1,
* then line segments (ax1,ay1)(ax2,ay2) and (bx1,by1)(bx2,by2)
* intersect
****************************************************************/
#define D ((ax2-ax1)*(by1-by2) - (ay2-ay1)*(bx1-bx2))
#define D1 ((bx1-ax1)*(by1-by2) - (by1-ay1)*(bx1-bx2))
#define D2 ((ax2-ax1)*(by1-ay1) - (ay2-ay1)*(bx1-ax1))
int
dig_test_for_intersection(double ax1, double ay1,
double ax2, double ay2,
double bx1, double by1, double bx2, double by2)
{
register double d, d1, d2;
double t;
d = D;
d1 = D1;
d2 = D2;
if (d > 0)
return (d1 >= 0 && d2 >= 0 && d >= d1 && d >= d2);
if (d < 0)
return (d1 <= 0 && d2 <= 0 && d <= d1 && d <= d2);
/* lines are parallel */
if (d1 || d2)
return 0;
/* segments are colinear. check for overlap */
if (ax1 > ax2) {
t = ax1;
ax1 = ax2;
ax2 = t;
}
if (bx1 > bx2) {
t = bx1;
bx1 = bx2;
bx2 = t;
}
if (ax1 > bx2)
return 0;
if (ax2 < bx1)
return 0;
/* there is overlap */
if (ax1 == bx2 || ax2 == bx1)
return 1; /* endpoints only */
return -1; /* true overlap */
}
int
dig_find_intersection(double ax1, double ay1,
double ax2, double ay2,
double bx1, double by1,
double bx2, double by2, double *x, double *y)
{
register double d, r1, r2;
double t;
d = D;
if (d) {
r1 = D1 / d;
r2 = D2 / d;
if (r1 < 0 || r1 > 1 || r2 < 0 || r2 > 1) {
return 0;
}
*x = ax1 + r1 * (ax2 - ax1);
*y = ay1 + r1 * (ay2 - ay1);
return 1;
}
/* lines are parallel */
if (D1 || D2) {
return 0;
}
/* segments are colinear. check for overlap */
if (ax1 > ax2) {
t = ax1;
ax1 = ax2;
ax2 = t;
}
if (bx1 > bx2) {
t = bx1;
bx1 = bx2;
bx2 = t;
}
if (ax1 > bx2)
return 0;
if (ax2 < bx1)
return 0;
/* there is overlap */
if (ax1 == bx2) {
*x = ax1;
*y = ay1;
return 1; /* endpoints only */
}
if (ax2 == bx1) {
*x = ax2;
*y = ay2;
return 1; /* endpoints only */
}
return -1; /* overlap, no single intersection point */
}
|