File: articulation_point.c

package info (click to toggle)
grass 6.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 104,028 kB
  • ctags: 40,409
  • sloc: ansic: 419,980; python: 63,559; tcl: 46,692; cpp: 29,791; sh: 18,564; makefile: 7,000; xml: 3,505; yacc: 561; perl: 559; lex: 480; sed: 70; objc: 7
file content (148 lines) | stat: -rw-r--r-- 4,695 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*!
   \file vector/neta/articulation_point.c

   \brief Network Analysis library - connected components

   Computes strongly and weakly connected components.

   (C) 2009-2010 by Daniel Bundala, and the GRASS Development Team

   This program is free software under the GNU General Public License
   (>=v2). Read the file COPYING that comes with GRASS for details.

   \author Daniel Bundala (Google Summer of Code 2009)
 */

#include <stdio.h>
#include <stdlib.h>
#include <grass/gis.h>
#include <grass/Vect.h>
#include <grass/glocale.h>
#include <grass/dgl/graph.h>

/*!
   \brief Get number of articulation points in the graph

   \param graph input graph
   \param[out] articulation_list list of articulation points

   \return number of points
   \return -1 on error
 */
int NetA_articulation_points(dglGraph_s * graph,
			     struct ilist *articulation_list)
{
    int nnodes;
    int points = 0;

    dglEdgesetTraverser_s *current;	/*edge to be processed when the node is visited */
    int *tin, *min_tin;		/*time in, and smallest tin over all successors. 0 if not yet visited */
    dglInt32_t **parent;	/*parents of the nodes */
    dglInt32_t **stack;		/*stack of nodes */
    dglInt32_t **current_edge;	/*current edge for each node */
    int *mark;			/*marked articulation points */
    dglNodeTraverser_s nt;
    dglInt32_t *current_node;
    int stack_size;
    int i, time;

    nnodes = dglGet_NodeCount(graph);
    current =
	(dglEdgesetTraverser_s *) G_calloc(nnodes + 1,
					   sizeof(dglEdgesetTraverser_s));
    tin = (int *)G_calloc(nnodes + 1, sizeof(int));
    min_tin = (int *)G_calloc(nnodes + 1, sizeof(int));
    parent = (dglInt32_t **) G_calloc(nnodes + 1, sizeof(dglInt32_t *));
    stack = (dglInt32_t **) G_calloc(nnodes + 1, sizeof(dglInt32_t *));
    current_edge = (dglInt32_t **) G_calloc(nnodes + 1, sizeof(dglInt32_t *));
    mark = (int *)G_calloc(nnodes + 1, sizeof(int));
    if (!tin || !min_tin || !parent || !stack || !current || !mark) {
	G_fatal_error(_("Out of memory"));
	return -1;
    }

    for (i = 1; i <= nnodes; i++) {
	dglEdgeset_T_Initialize(&current[i], graph,
				dglNodeGet_OutEdgeset(graph,
						      dglGetNode(graph, i)));
	current_edge[i] = dglEdgeset_T_First(&current[i]);
	tin[i] = mark[i] = 0;
    }

    dglNode_T_Initialize(&nt, graph);

    time = 0;
    for (current_node = dglNode_T_First(&nt); current_node;
	 current_node = dglNode_T_Next(&nt)) {
	dglInt32_t current_id = dglNodeGet_Id(graph, current_node);

	if (tin[current_id] == 0) {
	    int children = 0;	/*number of subtrees rooted at the root/current_node */

	    stack[0] = current_node;
	    stack_size = 1;
	    parent[current_id] = NULL;
	    while (stack_size) {
		dglInt32_t *node = stack[stack_size - 1];
		dglInt32_t node_id = dglNodeGet_Id(graph, node);

		if (tin[node_id] == 0)	/*vertex visited for the first time */
		    min_tin[node_id] = tin[node_id] = ++time;
		else {		/*return from the recursion */
		    dglInt32_t to = dglNodeGet_Id(graph,
						  dglEdgeGet_Tail(graph,
								  current_edge
								  [node_id]));
		    if (min_tin[to] >= tin[node_id])	/*no path from the subtree above the current node */
			mark[node_id] = 1;	/*so the current node must be an articulation point */

		    if (min_tin[to] < min_tin[node_id])
			min_tin[node_id] = min_tin[to];
		    current_edge[node_id] = dglEdgeset_T_Next(&current[node_id]);	/*proceed to the next edge */
		}
		for (; current_edge[node_id]; current_edge[node_id] = dglEdgeset_T_Next(&current[node_id])) {	/* try next edges */
		    dglInt32_t *to =
			dglEdgeGet_Tail(graph, current_edge[node_id]);
		    if (to == parent[node_id])
			continue;	/*skip parrent */
		    int to_id = dglNodeGet_Id(graph, to);

		    if (tin[to_id]) {	/*back edge, cannot be a bridge/articualtion point */
			if (tin[to_id] < min_tin[node_id])
			    min_tin[node_id] = tin[to_id];
		    }
		    else {	/*forward edge */
			if (node_id == current_id)
			    children++;	/*if root, increase number of children */
			parent[to_id] = node;
			stack[stack_size++] = to;
			break;
		    }
		}
		if (!current_edge[node_id])
		    stack_size--;	/*current node completely processed */
	    }
	    if (children > 1)
		mark[current_id] = 1;	/*if the root has more than 1 subtrees rooted at it, then it is an
					 * articulation point */
	}
    }

    for (i = 1; i <= nnodes; i++)
	if (mark[i]) {
	    points++;
	    Vect_list_append(articulation_list, i);
	}

    dglNode_T_Release(&nt);
    for (i = 1; i <= nnodes; i++)
	dglEdgeset_T_Release(&current[i]);

    G_free(current);
    G_free(tin);
    G_free(min_tin);
    G_free(parent);
    G_free(stack);
    G_free(current_edge);
    return points;
}