1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
/*!
\file vector/neta/centality.c
\brief Network Analysis library - centrality
Centrality measures
(C) 2009-2010 by Daniel Bundala, and the GRASS Development Team
This program is free software under the GNU General Public License
(>=v2). Read the file COPYING that comes with GRASS for details.
\author Daniel Bundala (Google Summer of Code 2009)
*/
#include <stdio.h>
#include <stdlib.h>
#include <grass/gis.h>
#include <grass/Vect.h>
#include <grass/glocale.h>
#include <grass/dgl/graph.h>
#include <grass/neta.h>
/*!
\brief Computes degree centrality measure.
Array degree has to be properly initialised to nnodes+1 elements
\param graph input graph
\param[out] array of degrees
*/
void NetA_degree_centrality(dglGraph_s * graph, double *degree)
{
int i;
double nnodes = dglGet_NodeCount(graph);
for (i = 1; i <= nnodes; i++)
degree[i] =
dglNodeGet_OutDegree(graph,
dglGetNode(graph, (dglInt32_t) i)) / nnodes;
}
/*!
\brief Computes eigenvector centrality using edge costs as weights.
\param graph input graph
\param iterations number of iterations
\param error ?
\param[out] eigenvector eigen vector value
\return 0 on success
\return -1 on failure
*/
int NetA_eigenvector_centrality(dglGraph_s * graph, int iterations,
double error, double *eigenvector)
{
int i, iter, nnodes;
double *tmp;
nnodes = dglGet_NodeCount(graph);
tmp = (double *)G_calloc(nnodes + 1, sizeof(double));
if (!tmp) {
G_fatal_error(_("Out of memory"));
return -1;
}
error *= error;
for (i = 1; i <= nnodes; i++)
eigenvector[i] = 1;
for (iter = 0; iter < iterations; iter++) {
for (i = 1; i <= nnodes; i++)
tmp[i] = 0;
dglInt32_t *node;
dglNodeTraverser_s nt;
dglEdgesetTraverser_s et;
dglNode_T_Initialize(&nt, graph);
for (node = dglNode_T_First(&nt); node; node = dglNode_T_Next(&nt)) {
dglInt32_t node_id = dglNodeGet_Id(graph, node);
double cur_value = eigenvector[node_id];
dglInt32_t *edge;
dglEdgeset_T_Initialize(&et, graph,
dglNodeGet_OutEdgeset(graph, node));
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et))
tmp[dglNodeGet_Id(graph, dglEdgeGet_Tail(graph, edge))] +=
cur_value * dglEdgeGet_Cost(graph, edge);
dglEdgeset_T_Release(&et);
}
dglNode_T_Release(&nt);
double cum_error = 0, max_value = tmp[1];
for (i = 2; i <= nnodes; i++)
if (tmp[i] > max_value)
max_value = tmp[i];
for (i = 1; i <= nnodes; i++) {
tmp[i] /= max_value;
cum_error +=
(tmp[i] - eigenvector[i]) * (tmp[i] - eigenvector[i]);
eigenvector[i] = tmp[i];
}
if (cum_error < error)
break;
}
G_free(tmp);
return 0;
}
/*!
\brief Computes betweenness and closeness centrality measure using Brandes algorithm.
Edge costs must be nonnegative. If some edge costs are negative then
the behaviour of this method is undefined.
\param graph input graph
\param[out] betweenness betweeness values
\param[out] closeness cloneness values
\return 0 on success
\return -1 on failure
*/
int NetA_betweenness_closeness(dglGraph_s * graph, double *betweenness,
double *closeness)
{
int i, j, nnodes, stack_size, count;
dglInt32_t *dst, *node, *stack, *cnt, *delta;
dglNodeTraverser_s nt;
dglEdgesetTraverser_s et;
dglHeap_s heap;
struct ilist **prev;
nnodes = dglGet_NodeCount(graph);
dst = (dglInt32_t *) G_calloc(nnodes + 1, sizeof(dglInt32_t));
prev = (struct ilist **)G_calloc(nnodes + 1, sizeof(struct ilist *));
stack = (dglInt32_t *) G_calloc(nnodes, sizeof(dglInt32_t));
cnt = (dglInt32_t *) G_calloc(nnodes + 1, sizeof(dglInt32_t));
delta = (dglInt32_t *) G_calloc(nnodes + 1, sizeof(dglInt32_t));
if (!dst || !prev || !stack || !cnt || !delta) {
G_fatal_error(_("Out of memory"));
return -1;
}
for (i = 1; i <= nnodes; i++) {
prev[i] = Vect_new_list();
if (closeness)
closeness[i] = 0;
if (betweenness)
betweenness[i] = 0;
}
count = 0;
G_percent_reset();
dglNode_T_Initialize(&nt, graph);
for (node = dglNode_T_First(&nt); node; node = dglNode_T_Next(&nt)) {
G_percent(count++, nnodes, 1);
dglInt32_t s = dglNodeGet_Id(graph, node);
dglHeapData_u heap_data;
dglHeapNode_s heap_node;
stack_size = 0;
for (i = 1; i <= nnodes; i++)
Vect_reset_list(prev[i]);
for (i = 1; i <= nnodes; i++) {
cnt[i] = 0;
dst[i] = -1;
}
dst[s] = 0;
cnt[s] = 1;
dglHeapInit(&heap);
heap_data.ul = s;
dglHeapInsertMin(&heap, 0, ' ', heap_data);
while (1) {
dglInt32_t v, dist;
if (!dglHeapExtractMin(&heap, &heap_node))
break;
v = heap_node.value.ul;
dist = heap_node.key;
if (dst[v] < dist)
continue;
stack[stack_size++] = v;
dglInt32_t *edge;
dglEdgeset_T_Initialize(&et, graph,
dglNodeGet_OutEdgeset(graph,
dglGetNode(graph,
v)));
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t *to = dglEdgeGet_Tail(graph, edge);
dglInt32_t to_id = dglNodeGet_Id(graph, to);
dglInt32_t d = dglEdgeGet_Cost(graph, edge);
if (dst[to_id] == -1 || dst[to_id] > dist + d) {
dst[to_id] = dist + d;
Vect_reset_list(prev[to_id]);
heap_data.ul = to_id;
dglHeapInsertMin(&heap, dist + d, ' ', heap_data);
}
if (dst[to_id] == dist + d) {
cnt[to_id] += cnt[v];
Vect_list_append(prev[to_id], v);
}
}
dglEdgeset_T_Release(&et);
}
dglHeapFree(&heap, NULL);
for (i = 1; i <= nnodes; i++)
delta[i] = 0;
for (i = stack_size - 1; i >= 0; i--) {
dglInt32_t w = stack[i];
if (closeness)
closeness[s] += dst[w];
for (j = 0; j < prev[w]->n_values; j++) {
dglInt32_t v = prev[w]->value[j];
delta[v] += (cnt[v] / (double)cnt[w]) * (1.0 + delta[w]);
}
if (w != s && betweenness)
betweenness[w] += delta[w];
}
if (closeness)
closeness[s] /= (double)stack_size;
}
dglNode_T_Release(&nt);
for (i = 1; i <= nnodes; i++)
Vect_destroy_list(prev[i]);
G_free(delta);
G_free(cnt);
G_free(stack);
G_free(prev);
G_free(dst);
return 0;
};
|