File: centrality.c

package info (click to toggle)
grass 6.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 104,028 kB
  • ctags: 40,409
  • sloc: ansic: 419,980; python: 63,559; tcl: 46,692; cpp: 29,791; sh: 18,564; makefile: 7,000; xml: 3,505; yacc: 561; perl: 559; lex: 480; sed: 70; objc: 7
file content (248 lines) | stat: -rw-r--r-- 6,236 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*!
   \file vector/neta/centality.c

   \brief Network Analysis library - centrality

   Centrality measures

   (C) 2009-2010 by Daniel Bundala, and the GRASS Development Team

   This program is free software under the GNU General Public License
   (>=v2). Read the file COPYING that comes with GRASS for details.

   \author Daniel Bundala (Google Summer of Code 2009)
 */

#include <stdio.h>
#include <stdlib.h>
#include <grass/gis.h>
#include <grass/Vect.h>
#include <grass/glocale.h>
#include <grass/dgl/graph.h>
#include <grass/neta.h>

/*!
   \brief Computes degree centrality measure.

   Array degree has to be properly initialised to nnodes+1 elements

   \param graph input graph
   \param[out] array of degrees
 */
void NetA_degree_centrality(dglGraph_s * graph, double *degree)
{
    int i;
    double nnodes = dglGet_NodeCount(graph);

    for (i = 1; i <= nnodes; i++)
	degree[i] =
	    dglNodeGet_OutDegree(graph,
				 dglGetNode(graph, (dglInt32_t) i)) / nnodes;
}

/*!
   \brief Computes eigenvector centrality using edge costs as weights.

   \param graph input graph
   \param iterations number of iterations
   \param error ?
   \param[out] eigenvector eigen vector value

   \return 0 on success
   \return -1 on failure
 */
int NetA_eigenvector_centrality(dglGraph_s * graph, int iterations,
				double error, double *eigenvector)
{
    int i, iter, nnodes;
    double *tmp;

    nnodes = dglGet_NodeCount(graph);
    tmp = (double *)G_calloc(nnodes + 1, sizeof(double));
    if (!tmp) {
	G_fatal_error(_("Out of memory"));
	return -1;
    }

    error *= error;
    for (i = 1; i <= nnodes; i++)
	eigenvector[i] = 1;
    for (iter = 0; iter < iterations; iter++) {
	for (i = 1; i <= nnodes; i++)
	    tmp[i] = 0;
	dglInt32_t *node;
	dglNodeTraverser_s nt;
	dglEdgesetTraverser_s et;

	dglNode_T_Initialize(&nt, graph);
	for (node = dglNode_T_First(&nt); node; node = dglNode_T_Next(&nt)) {
	    dglInt32_t node_id = dglNodeGet_Id(graph, node);
	    double cur_value = eigenvector[node_id];
	    dglInt32_t *edge;

	    dglEdgeset_T_Initialize(&et, graph,
				    dglNodeGet_OutEdgeset(graph, node));
	    for (edge = dglEdgeset_T_First(&et); edge;
		 edge = dglEdgeset_T_Next(&et))
		tmp[dglNodeGet_Id(graph, dglEdgeGet_Tail(graph, edge))] +=
		    cur_value * dglEdgeGet_Cost(graph, edge);

	    dglEdgeset_T_Release(&et);
	}
	dglNode_T_Release(&nt);
	double cum_error = 0, max_value = tmp[1];

	for (i = 2; i <= nnodes; i++)
	    if (tmp[i] > max_value)
		max_value = tmp[i];
	for (i = 1; i <= nnodes; i++) {
	    tmp[i] /= max_value;
	    cum_error +=
		(tmp[i] - eigenvector[i]) * (tmp[i] - eigenvector[i]);
	    eigenvector[i] = tmp[i];
	}
	if (cum_error < error)
	    break;

    }

    G_free(tmp);
    return 0;
}

/*!
   \brief Computes betweenness and closeness centrality measure using Brandes algorithm. 

   Edge costs must be nonnegative. If some edge costs are negative then
   the behaviour of this method is undefined.

   \param graph input graph
   \param[out] betweenness betweeness values
   \param[out] closeness cloneness values

   \return 0 on success
   \return -1 on failure
 */
int NetA_betweenness_closeness(dglGraph_s * graph, double *betweenness,
			       double *closeness)
{
    int i, j, nnodes, stack_size, count;
    dglInt32_t *dst, *node, *stack, *cnt, *delta;
    dglNodeTraverser_s nt;
    dglEdgesetTraverser_s et;
    dglHeap_s heap;
    struct ilist **prev;

    nnodes = dglGet_NodeCount(graph);

    dst = (dglInt32_t *) G_calloc(nnodes + 1, sizeof(dglInt32_t));
    prev = (struct ilist **)G_calloc(nnodes + 1, sizeof(struct ilist *));
    stack = (dglInt32_t *) G_calloc(nnodes, sizeof(dglInt32_t));
    cnt = (dglInt32_t *) G_calloc(nnodes + 1, sizeof(dglInt32_t));
    delta = (dglInt32_t *) G_calloc(nnodes + 1, sizeof(dglInt32_t));

    if (!dst || !prev || !stack || !cnt || !delta) {
	G_fatal_error(_("Out of memory"));
	return -1;
    }


    for (i = 1; i <= nnodes; i++) {
	prev[i] = Vect_new_list();
	if (closeness)
	    closeness[i] = 0;
	if (betweenness)
	    betweenness[i] = 0;
    }

    count = 0;
    G_percent_reset();
    dglNode_T_Initialize(&nt, graph);
    for (node = dglNode_T_First(&nt); node; node = dglNode_T_Next(&nt)) {
	G_percent(count++, nnodes, 1);
	dglInt32_t s = dglNodeGet_Id(graph, node);
	dglHeapData_u heap_data;
	dglHeapNode_s heap_node;

	stack_size = 0;
	for (i = 1; i <= nnodes; i++)
	    Vect_reset_list(prev[i]);
	for (i = 1; i <= nnodes; i++) {
	    cnt[i] = 0;
	    dst[i] = -1;
	}
	dst[s] = 0;
	cnt[s] = 1;
	dglHeapInit(&heap);
	heap_data.ul = s;
	dglHeapInsertMin(&heap, 0, ' ', heap_data);
	while (1) {
	    dglInt32_t v, dist;

	    if (!dglHeapExtractMin(&heap, &heap_node))
		break;
	    v = heap_node.value.ul;
	    dist = heap_node.key;
	    if (dst[v] < dist)
		continue;
	    stack[stack_size++] = v;

	    dglInt32_t *edge;

	    dglEdgeset_T_Initialize(&et, graph,
				    dglNodeGet_OutEdgeset(graph,
							  dglGetNode(graph,
								     v)));
	    for (edge = dglEdgeset_T_First(&et); edge;
		 edge = dglEdgeset_T_Next(&et)) {
		dglInt32_t *to = dglEdgeGet_Tail(graph, edge);
		dglInt32_t to_id = dglNodeGet_Id(graph, to);
		dglInt32_t d = dglEdgeGet_Cost(graph, edge);

		if (dst[to_id] == -1 || dst[to_id] > dist + d) {
		    dst[to_id] = dist + d;
		    Vect_reset_list(prev[to_id]);
		    heap_data.ul = to_id;
		    dglHeapInsertMin(&heap, dist + d, ' ', heap_data);
		}
		if (dst[to_id] == dist + d) {
		    cnt[to_id] += cnt[v];
		    Vect_list_append(prev[to_id], v);
		}
	    }

	    dglEdgeset_T_Release(&et);
	}
	dglHeapFree(&heap, NULL);
	for (i = 1; i <= nnodes; i++)
	    delta[i] = 0;
	for (i = stack_size - 1; i >= 0; i--) {
	    dglInt32_t w = stack[i];

	    if (closeness)
		closeness[s] += dst[w];

	    for (j = 0; j < prev[w]->n_values; j++) {
		dglInt32_t v = prev[w]->value[j];

		delta[v] += (cnt[v] / (double)cnt[w]) * (1.0 + delta[w]);
	    }
	    if (w != s && betweenness)
		betweenness[w] += delta[w];

	}
	if (closeness)
	    closeness[s] /= (double)stack_size;
    }
    dglNode_T_Release(&nt);

    for (i = 1; i <= nnodes; i++)
	Vect_destroy_list(prev[i]);
    G_free(delta);
    G_free(cnt);
    G_free(stack);
    G_free(prev);
    G_free(dst);

    return 0;
};