1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
/*!
\file vector/neta/components.c
\brief Network Analysis library - graph componets
Computes strongly and weakly connected components.
(C) 2009-2010 by Daniel Bundala, and the GRASS Development Team
This program is free software under the GNU General Public License
(>=v2). Read the file COPYING that comes with GRASS for details.
\author Daniel Bundala (Google Summer of Code 2009)
*/
#include <stdio.h>
#include <stdlib.h>
#include <grass/gis.h>
#include <grass/Vect.h>
#include <grass/glocale.h>
#include <grass/dgl/graph.h>
/*!
\brief Computes weekly connected components
\param graph input graph
\param[out] component list of components
\return number of components
\return -1 on failure
*/
int NetA_weakly_connected_components(dglGraph_s * graph, int *component)
{
int nnodes;
dglInt32_t *stack;
int *visited;
int stack_size, components;
dglInt32_t *cur_node;
dglNodeTraverser_s nt;
components = 0;
nnodes = dglGet_NodeCount(graph);
stack = (dglInt32_t *) G_calloc(nnodes + 1, sizeof(dglInt32_t));
visited = (int *)G_calloc(nnodes + 1, sizeof(int));
if (!stack || !visited) {
G_fatal_error(_("Out of memory"));
return -1;
}
dglNode_T_Initialize(&nt, graph);
for (cur_node = dglNode_T_First(&nt); cur_node;
cur_node = dglNode_T_Next(&nt)) {
dglInt32_t node_id = dglNodeGet_Id(graph, cur_node);
if (!visited[node_id]) {
visited[node_id] = 1;
stack[0] = node_id;
stack_size = 1;
component[node_id] = ++components;
while (stack_size) {
dglInt32_t *node, *edgeset, *edge;
dglEdgesetTraverser_s et;
node = dglGetNode(graph, stack[--stack_size]);
edgeset = dglNodeGet_OutEdgeset(graph, node);
dglEdgeset_T_Initialize(&et, graph, edgeset);
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t to;
to = dglNodeGet_Id(graph, dglEdgeGet_Tail(graph, edge));
if (!visited[to]) {
visited[to] = 1;
component[to] = components;
stack[stack_size++] = to;
}
}
dglEdgeset_T_Release(&et);
}
}
}
dglNode_T_Release(&nt);
G_free(visited);
return components;
}
/*!
\brief Computes strongly connected components
\param graph input graph
\param[out] component list of components
\return number of components
\return -1 on failure
*/
int NetA_strongly_connected_components(dglGraph_s * graph, int *component)
{
int nnodes;
dglInt32_t *stack, *order;
int *visited, *processed;
int stack_size, order_size, components;
dglInt32_t *node;
dglNodeTraverser_s nt;
components = 0;
nnodes = dglGet_NodeCount(graph);
stack = (dglInt32_t *) G_calloc(nnodes + 1, sizeof(dglInt32_t));
order = (dglInt32_t *) G_calloc(nnodes + 1, sizeof(dglInt32_t));
visited = (int *)G_calloc(nnodes + 1, sizeof(int));
processed = (int *)G_calloc(nnodes + 1, sizeof(int));
if (!stack || !visited || !order || !processed) {
G_fatal_error(_("Out of memory"));
return -1;
}
order_size = 0;
dglNode_T_Initialize(&nt, graph);
for (node = dglNode_T_First(&nt); node; node = dglNode_T_Next(&nt)) {
dglInt32_t node_id = dglNodeGet_Id(graph, node);
component[node_id] = 0;
if (!visited[node_id]) {
visited[node_id] = 1;
stack[0] = node_id;
stack_size = 1;
while (stack_size) {
dglInt32_t *node, *edgeset, *edge;
dglEdgesetTraverser_s et;
dglInt32_t cur_node_id = stack[stack_size - 1];
if (processed[cur_node_id]) {
stack_size--;
order[order_size++] = cur_node_id;
continue;
}
processed[cur_node_id] = 1;
node = dglGetNode(graph, cur_node_id);
edgeset = dglNodeGet_OutEdgeset(graph, node);
dglEdgeset_T_Initialize(&et, graph, edgeset);
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t to;
if (dglEdgeGet_Id(graph, edge) < 0)
continue; /*ignore backward edges */
to = dglNodeGet_Id(graph, dglEdgeGet_Tail(graph, edge));
if (!visited[to]) {
visited[to] = 1;
stack[stack_size++] = to;
}
}
dglEdgeset_T_Release(&et);
}
}
}
dglNode_T_Release(&nt);
while (order_size) {
dglInt32_t node_id = order[--order_size];
if (component[node_id])
continue;
components++;
component[node_id] = components;
stack[0] = node_id;
stack_size = 1;
while (stack_size) {
dglInt32_t *node, *edgeset, *edge;
dglEdgesetTraverser_s et;
dglInt32_t cur_node_id = stack[--stack_size];
node = dglGetNode(graph, cur_node_id);
edgeset = dglNodeGet_OutEdgeset(graph, node);
dglEdgeset_T_Initialize(&et, graph, edgeset);
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t to;
if (dglEdgeGet_Id(graph, edge) > 0)
continue; /*ignore forward edges */
to = dglNodeGet_Id(graph, dglEdgeGet_Tail(graph, edge));
if (!component[to]) {
component[to] = components;
stack[stack_size++] = to;
}
}
dglEdgeset_T_Release(&et);
}
}
G_free(stack);
G_free(visited);
G_free(order);
G_free(processed);
return components;
}
|