1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
/**
* \file transform.c
*
* \brief This file contains routines which perform (affine?)
* transformations from one coordinate system into another.
*
* The second system may be translated, stretched, and rotated relative
* to the first. The input system is system <em>a</em> and the output
* system is <em>b</em>.
*
* This program is free software under the GNU General Public License
* (>=v2). Read the file COPYING that comes with GRASS for details.
*
* \author GRASS GIS Development Team
*
* \date 1987-2007
*/
/****************************************************************
note: uses sqrt() from math library
*****************************************************************
Points from one system may be converted into the second by
use of one of the two equation routines.
transform_a_into_b (ax,ay,bx,by)
double ax,ay; input point from system a
double *bx,*by; resultant point in system b
transform_b_into_a (bx,by,ax,ay)
double bx,by; input point from system b
double *ax,*ay; resultant point in system a
*****************************************************************
Residual analysis on the equation can be run to test how well
the equations work. Either test how well b is predicted by a
or vice versa.
residuals_a_predicts_b (ax,ay,bx,by,use,n,residuals,rms)
residuals_b_predicts_a (ax,ay,bx,by,use,n,residuals,rms)
double ax[], ay[]; coordinate from system a
double bx[], by[]; coordinate from system b
char use[]; use point flags
int n; number of points in ax,ay,bx,by
double residual[] residual error for each point
double *rms; overall root mean square error
****************************************************************/
#include <stdio.h>
#include <math.h>
#include <grass/libtrans.h>
/* the coefficients */
static double A0, A1, A2, A3, A4, A5;
static double B0, B1, B2, B3, B4, B5;
/* function prototypes */
static int resid(double *, double *, double *, double *, int *, int, double *,
double *, int);
/**
* \fn int compute_transformation_coef (double ax[], double ay[], double bx[], double by[], char *use, int n)
*
* \brief The first step is to compute coefficients for a set of equations
* which are then used to convert from the one system to the other.
*
* A set of x,y points from both systems is input into the equation
* generator which determines the equation coefficients which most
* nearly represent the original points. These coefficients are kept
* in a static variables internal to this file.
*
* NOTE: use[i] must be true for ax[i],ay[i],bx[i],by[i] to be used
* in the equation. Also, the total number of used points must be
* 4 or larger.
*
* \param[in] ax coordinate from system a
* \param[in] ay coordinate from system a
* \param[in] bx coordinate from system b
* \param[in] by coordinate from system b
* \param[in] use use point flags
* \param[in] n number of points in ax, ay, bx, by
* \return int 1 if successful
* \return int -1 if could not solve equation. Points probably colinear.
* \return int -2 if less than 4 points used
*/
int compute_transformation_coef(double ax[], double ay[], double bx[],
double by[], int *use, int n)
{
int i;
int j;
int count;
double aa[3];
double aar[3];
double bb[3];
double bbr[3];
double cc[3][3];
double x;
count = 0;
for (i = 0; i < n; i++)
if (use[i])
count++;
if (count < 4)
return -2; /* must have at least 4 points */
for (i = 0; i < 3; i++) {
aa[i] = bb[i] = 0.0;
for (j = 0; j < 3; j++)
cc[i][j] = 0.0;
}
for (i = 0; i < n; i++) {
if (!use[i])
continue; /* skip this point */
cc[0][0] += 1;
cc[0][1] += bx[i];
cc[0][2] += by[i];
cc[1][1] += bx[i] * bx[i];
cc[1][2] += bx[i] * by[i];
cc[2][2] += by[i] * by[i];
aa[0] += ay[i];
aa[1] += ay[i] * bx[i];
aa[2] += ay[i] * by[i];
bb[0] += ax[i];
bb[1] += ax[i] * bx[i];
bb[2] += ax[i] * by[i];
}
cc[1][0] = cc[0][1];
cc[2][0] = cc[0][2];
cc[2][1] = cc[1][2];
/* aa and bb are solved */
if (inverse(cc) < 0)
return (-1);
if (m_mult(cc, aa, aar) < 0 || m_mult(cc, bb, bbr) < 0)
return (-1);
/* the equation coefficients */
B0 = aar[0];
B1 = aar[1];
B2 = aar[2];
B3 = bbr[0];
B4 = bbr[1];
B5 = bbr[2];
/* the inverse equation */
x = B2 * B4 - B1 * B5;
if (!x)
return (-1);
A0 = (B1 * B3 - B0 * B4) / x;
A1 = -B1 / x;
A2 = B4 / x;
A3 = (B0 * B5 - B2 * B3) / x;
A4 = B2 / x;
A5 = -B5 / x;
return 1;
}
int transform_a_into_b(double ax, double ay, double *bx, double *by)
{
*by = A0 + A1 * ax + A2 * ay;
*bx = A3 + A4 * ax + A5 * ay;
return 0;
}
int transform_b_into_a(double bx, double by, double *ax, double *ay)
{
*ay = B0 + B1 * bx + B2 * by;
*ax = B3 + B4 * bx + B5 * by;
return 0;
}
/**************************************************************
These routines are internal to this source code
solve (a, b)
double a[3][3]
double b[3]
equation solver used by compute_transformation_coef()
**************************************************************/
/* #define abs(xx) (xx >= 0 ? xx : -xx) */
/* #define N 3 */
int residuals_a_predicts_b(double ax[], double ay[], double bx[], double by[],
int use[], int n, double residuals[], double *rms)
{
resid(ax, ay, bx, by, use, n, residuals, rms, 1);
return 0;
}
int residuals_b_predicts_a(double ax[], double ay[], double bx[], double by[],
int use[], int n, double residuals[], double *rms)
{
resid(ax, ay, bx, by, use, n, residuals, rms, 0);
return 0;
}
/**
* \fn int print_transform_matrix (void)
*
* \brief Prints matrix to stdout in human readable format.
*
* \return int 1
*/
int print_transform_matrix(void)
{
fprintf(stdout, "\nTransformation Matrix\n");
fprintf(stdout, "| xoff a b |\n");
fprintf(stdout, "| yoff d e |\n");
fprintf(stdout, "-------------------------------------------\n");
fprintf(stdout, "%f %f %f \n", -B3, B2, -B5);
fprintf(stdout, "%f %f %f \n", -B0, -B1, B4);
fprintf(stdout, "-------------------------------------------\n");
return 1;
}
static int resid(double ax[], double ay[], double bx[], double by[],
int use[], int n, double residuals[], double *rms, int atob)
{
double x, y;
int i;
int count;
double sum;
double delta;
double dx, dy;
count = 0;
sum = 0.0;
for (i = 0; i < n; i++) {
if (!use[i])
continue;
count++;
if (atob) {
transform_a_into_b(ax[i], ay[i], &x, &y);
dx = x - bx[i];
dy = y - by[i];
}
else {
transform_b_into_a(bx[i], by[i], &x, &y);
dx = x - ax[i];
dy = y - ay[i];
}
delta = dx * dx + dy * dy;
residuals[i] = sqrt(delta);
sum += delta;
}
*rms = sqrt(sum / count);
return 0;
}
|