File: transform.c

package info (click to toggle)
grass 6.4.4-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 104,028 kB
  • ctags: 40,409
  • sloc: ansic: 419,980; python: 63,559; tcl: 46,692; cpp: 29,791; sh: 18,564; makefile: 7,000; xml: 3,505; yacc: 561; perl: 559; lex: 480; sed: 70; objc: 7
file content (280 lines) | stat: -rw-r--r-- 6,963 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

/**
 * \file transform.c
 *
 * \brief This file contains routines which perform (affine?)
 * transformations from one coordinate system into another.
 *
 * The second system may be translated, stretched, and rotated relative
 * to the first. The input system is system <em>a</em> and the output
 * system is <em>b</em>.
 *
 * This program is free software under the GNU General Public License
 * (>=v2). Read the file COPYING that comes with GRASS for details.
 *
 * \author GRASS GIS Development Team
 *
 * \date 1987-2007
 */

/****************************************************************
note: uses sqrt() from math library
*****************************************************************
Points from one system may be converted into the second by
use of one of the two equation routines.

transform_a_into_b (ax,ay,bx,by)

    double ax,ay;            input point from system a
    double *bx,*by;          resultant point in system b

transform_b_into_a (bx,by,ax,ay)

    double bx,by;            input point from system b
    double *ax,*ay;          resultant point in system a
*****************************************************************
Residual analysis on the equation can be run to test how well
the equations work.  Either test how well b is predicted by a
or vice versa.

residuals_a_predicts_b (ax,ay,bx,by,use,n,residuals,rms)
residuals_b_predicts_a (ax,ay,bx,by,use,n,residuals,rms)

    double ax[], ay[];       coordinate from system a
    double bx[], by[];       coordinate from system b
    char   use[];            use point flags
    int n;                   number of points in ax,ay,bx,by
    double residual[]        residual error for each point
    double *rms;             overall root mean square error
****************************************************************/

#include <stdio.h>
#include <math.h>
#include <grass/libtrans.h>

/* the coefficients */
static double A0, A1, A2, A3, A4, A5;
static double B0, B1, B2, B3, B4, B5;

/* function prototypes */
static int resid(double *, double *, double *, double *, int *, int, double *,
		 double *, int);


/**
 * \fn int compute_transformation_coef (double ax[], double ay[], double bx[], double by[], char *use, int n)
 *
 * \brief The first step is to compute coefficients for a set of equations
 * which are then used to convert from the one system to the other.
 *
 * A set of x,y points from both systems is input into the equation
 * generator which determines the equation coefficients which most
 * nearly represent the original points. These coefficients are kept
 * in a static variables internal to this file.
 *
 * NOTE: use[i] must be true for ax[i],ay[i],bx[i],by[i] to be used
 * in the equation.  Also, the total number of used points must be
 * 4 or larger.
 *
 * \param[in] ax coordinate from system a
 * \param[in] ay coordinate from system a
 * \param[in] bx coordinate from system b
 * \param[in] by coordinate from system b
 * \param[in] use use point flags
 * \param[in] n number of points in ax, ay, bx, by
 * \return int 1 if successful
 * \return int -1 if could not solve equation. Points probably colinear.
 * \return int -2 if less than 4 points used
 */

int compute_transformation_coef(double ax[], double ay[], double bx[],
				double by[], int *use, int n)
{
    int i;
    int j;
    int count;
    double aa[3];
    double aar[3];
    double bb[3];
    double bbr[3];

    double cc[3][3];
    double x;

    count = 0;
    for (i = 0; i < n; i++)
	if (use[i])
	    count++;
    if (count < 4)
	return -2;		/* must have at least 4 points */

    for (i = 0; i < 3; i++) {
	aa[i] = bb[i] = 0.0;

	for (j = 0; j < 3; j++)
	    cc[i][j] = 0.0;
    }

    for (i = 0; i < n; i++) {
	if (!use[i])
	    continue;		/* skip this point */
	cc[0][0] += 1;
	cc[0][1] += bx[i];
	cc[0][2] += by[i];

	cc[1][1] += bx[i] * bx[i];
	cc[1][2] += bx[i] * by[i];
	cc[2][2] += by[i] * by[i];

	aa[0] += ay[i];
	aa[1] += ay[i] * bx[i];
	aa[2] += ay[i] * by[i];

	bb[0] += ax[i];
	bb[1] += ax[i] * bx[i];
	bb[2] += ax[i] * by[i];
    }

    cc[1][0] = cc[0][1];
    cc[2][0] = cc[0][2];
    cc[2][1] = cc[1][2];

    /* aa and bb are solved */
    if (inverse(cc) < 0)
	return (-1);
    if (m_mult(cc, aa, aar) < 0 || m_mult(cc, bb, bbr) < 0)
	return (-1);

    /* the equation coefficients */
    B0 = aar[0];
    B1 = aar[1];
    B2 = aar[2];

    B3 = bbr[0];
    B4 = bbr[1];
    B5 = bbr[2];

    /* the inverse equation */
    x = B2 * B4 - B1 * B5;

    if (!x)
	return (-1);

    A0 = (B1 * B3 - B0 * B4) / x;
    A1 = -B1 / x;
    A2 = B4 / x;
    A3 = (B0 * B5 - B2 * B3) / x;
    A4 = B2 / x;
    A5 = -B5 / x;

    return 1;
}


int transform_a_into_b(double ax, double ay, double *bx, double *by)
{
    *by = A0 + A1 * ax + A2 * ay;
    *bx = A3 + A4 * ax + A5 * ay;

    return 0;
}


int transform_b_into_a(double bx, double by, double *ax, double *ay)
{
    *ay = B0 + B1 * bx + B2 * by;
    *ax = B3 + B4 * bx + B5 * by;

    return 0;
}

/**************************************************************
These routines are internal to this source code

solve (a, b)
    double a[3][3]
    double b[3]

    equation solver used by compute_transformation_coef()
**************************************************************/

/*  #define abs(xx) (xx >= 0 ? xx : -xx)  */
/*      #define N 3  */


int residuals_a_predicts_b(double ax[], double ay[], double bx[], double by[],
			   int use[], int n, double residuals[], double *rms)
{
    resid(ax, ay, bx, by, use, n, residuals, rms, 1);

    return 0;
}


int residuals_b_predicts_a(double ax[], double ay[], double bx[], double by[],
			   int use[], int n, double residuals[], double *rms)
{
    resid(ax, ay, bx, by, use, n, residuals, rms, 0);

    return 0;
}


/**
 * \fn int print_transform_matrix (void)
 *
 * \brief Prints matrix to stdout in human readable format.
 *
 * \return int 1
 */

int print_transform_matrix(void)
{
    fprintf(stdout, "\nTransformation Matrix\n");
    fprintf(stdout, "| xoff a b |\n");
    fprintf(stdout, "| yoff d e |\n");
    fprintf(stdout, "-------------------------------------------\n");
    fprintf(stdout, "%f %f %f \n", -B3, B2, -B5);
    fprintf(stdout, "%f %f %f \n", -B0, -B1, B4);
    fprintf(stdout, "-------------------------------------------\n");

    return 1;
}


static int resid(double ax[], double ay[], double bx[], double by[],
		 int use[], int n, double residuals[], double *rms, int atob)
{
    double x, y;
    int i;
    int count;
    double sum;
    double delta;
    double dx, dy;

    count = 0;
    sum = 0.0;
    for (i = 0; i < n; i++) {
	if (!use[i])
	    continue;

	count++;
	if (atob) {
	    transform_a_into_b(ax[i], ay[i], &x, &y);
	    dx = x - bx[i];
	    dy = y - by[i];
	}
	else {
	    transform_b_into_a(bx[i], by[i], &x, &y);
	    dx = x - ax[i];
	    dy = y - ay[i];
	}

	delta = dx * dx + dy * dy;
	residuals[i] = sqrt(delta);
	sum += delta;
    }
    *rms = sqrt(sum / count);

    return 0;
}