1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
|
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 18 10:46:25 2012
@author: pietro
"""
import ctypes
import re
from collections import namedtuple
import numpy as np
import grass.lib.gis as libgis
import grass.lib.vector as libvect
from grass.pygrass.errors import GrassError, mapinfo_must_be_set
from grass.pygrass.vector.basic import Ilist, Bbox, Cats
from grass.pygrass.vector import sql
# For test purposes
test_vector_name = "geometry_doctest_map"
LineDist = namedtuple('LineDist', 'point dist spdist sldist')
WKT = {'POINT\((.*)\)': 'point', # 'POINT\(\s*([+-]*\d+\.*\d*)+\s*\)'
'LINESTRING\((.*)\)': 'line'}
def read_WKT(string):
"""Read the string and return a geometry object
**WKT**:
::
POINT(0 0)
LINESTRING(0 0,1 1,1 2)
POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))
MULTIPOINT(0 0,1 2)
MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))
MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)),
((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))
GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))
**EWKT**:
::
POINT(0 0 0) -- XYZ
SRID=32632;POINT(0 0) -- XY with SRID
POINTM(0 0 0) -- XYM
POINT(0 0 0 0) -- XYZM
SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID
MULTILINESTRING((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4 1))
POLYGON((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0))
MULTIPOLYGON(((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),
(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0)),
((-1 -1 0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0)))
GEOMETRYCOLLECTIONM( POINTM(2 3 9), LINESTRINGM(2 3 4, 3 4 5) )
MULTICURVE( (0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4) )
POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )
TRIANGLE ((0 0, 0 9, 9 0, 0 0))
TIN( ((0 0 0, 0 0 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 0 0 0)) )
"""
for regexp, obj in WKT.items():
if re.match(regexp, string):
geo = 10
return obj(geo)
def read_WKB(buff):
"""Read the binary buffer and return a geometry object"""
pass
def intersects(lineA, lineB, with_z=False):
"""Return a list of points
>>> lineA = Line([(0, 0), (4, 0)])
>>> lineB = Line([(2, 2), (2, -2)])
>>> intersects(lineA, lineB)
Line([Point(2.000000, 0.000000)])
"""
line = Line()
if libvect.Vect_line_get_intersections(lineA.c_points, lineB.c_points,
line.c_points, int(with_z)):
return line
else:
return []
#=============================================
# GEOMETRY
#=============================================
def get_xyz(pnt):
"""Return a tuple with: x, y, z.
>>> pnt = Point(0, 0)
>>> get_xyz(pnt)
(0.0, 0.0, 0.0)
>>> get_xyz((1, 1))
(1, 1, 0.0)
>>> get_xyz((1, 1, 2))
(1, 1, 2)
>>> get_xyz((1, 1, 2, 2)) #doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: The the format of the point is not supported: (1, 1, 2, 2)
"""
if isinstance(pnt, Point):
if pnt.is2D:
x, y = pnt.x, pnt.y
z = 0.
else:
x, y, z = pnt.x, pnt.y, pnt.z
else:
if len(pnt) == 2:
x, y = pnt
z = 0.
elif len(pnt) == 3:
x, y, z = pnt
else:
str_error = "The the format of the point is not supported: {0!r}"
raise ValueError(str_error.format(pnt))
return x, y, z
class Attrs(object):
def __init__(self, cat, table, writeable=False):
self._cat = None
self.cond = ''
self.table = table
self.cat = cat
self.writeable = writeable
def _get_cat(self):
return self._cat
def _set_cat(self, value):
self._cat = value
if value:
# update condition
self.cond = "%s=%d" % (self.table.key, value)
cat = property(fget=_get_cat, fset=_set_cat,
doc="Set and obtain cat value")
def __getitem__(self, keys):
"""Return the value stored in the attribute table.
>>> from grass.pygrass.vector import VectorTopo
>>> test_vect = VectorTopo(test_vector_name)
>>> test_vect.open('r')
>>> v1 = test_vect[1]
>>> v1.attrs['name']
u'point'
>>> v1.attrs['name', 'value']
(u'point', 1.0)
>>> test_vect.close()
"""
sqlcode = sql.SELECT_WHERE.format(cols=(keys if np.isscalar(keys)
else ', '.join(keys)),
tname=self.table.name,
condition=self.cond)
cur = self.table.execute(sqlcode)
results = cur.fetchone()
if results is not None:
return results[0] if len(results) == 1 else results
def __setitem__(self, keys, values):
"""Set value of a given column of a table attribute.
>>> from grass.pygrass.vector import VectorTopo
>>> test_vect = VectorTopo(test_vector_name)
>>> test_vect.open('r')
>>> v1 = test_vect[1]
>>> v1.attrs['name']
u'point'
>>> v1.attrs['name'] = "new_point_1"
>>> v1.attrs['name']
u'new_point_1'
>>> v1.attrs['name', 'value'] = "new_point_2", 100.
>>> v1.attrs['name', 'value']
(u'new_point_2', 100.0)
>>> v1.attrs['name', 'value'] = "point", 1.
>>> v1.attrs.table.conn.commit()
>>> test_vect.close()
"""
if self.writeable:
if np.isscalar(keys):
keys, values = (keys, ), (values, )
vals = ','.join(['%s=%r' % (k, v) for k, v in zip(keys, values)])
# "UPDATE {tname} SET {values} WHERE {condition};"
sqlcode = sql.UPDATE_WHERE.format(tname=self.table.name,
values=vals,
condition=self.cond)
self.table.execute(sqlcode)
#self.table.conn.commit()
else:
str_err = "You can only read the attributes if the map is in another mapset"
raise GrassError(str_err)
def __dict__(self):
"""Return a dict of the attribute table row."""
dic = {}
for key, val in zip(self.keys(), self.values()):
dic[key] = val
return dic
def values(self):
"""Return the values of the attribute table row.
>>> from grass.pygrass.vector import VectorTopo
>>> test_vect = VectorTopo(test_vector_name)
>>> test_vect.open('r')
>>> v1 = test_vect[1]
>>> v1.attrs.values()
(1, u'point', 1.0)
>>> test_vect.close()
"""
#SELECT {cols} FROM {tname} WHERE {condition}
cur = self.table.execute(sql.SELECT_WHERE.format(cols='*',
tname=self.table.name,
condition=self.cond))
return cur.fetchone()
def keys(self):
"""Return the column name of the attribute table.
>>> from grass.pygrass.vector import VectorTopo
>>> test_vect = VectorTopo(test_vector_name)
>>> test_vect.open('r')
>>> v1 = test_vect[1]
>>> v1.attrs.keys()
[u'cat', u'name', u'value']
>>> test_vect.close()
"""
return self.table.columns.names()
def commit(self):
"""Save the changes"""
self.table.conn.commit()
class Geo(object):
"""
Base object for different feature types
"""
gtype = None
def __init__(self, v_id=0, c_mapinfo=None, c_points=None, c_cats=None,
table=None, writeable=False, is2D=True, free_points=False,
free_cats=False):
"""Constructor of a geometry object
:param v_id: The vector feature id
:param c_mapinfo: A pointer to the vector mapinfo structure
:param c_points: A pointer to a libvect.line_pnts structure, this
is optional, if not set an internal structure will
be allocated and free'd at object destruction
:param c_cats: A pointer to a libvect.line_cats structure, this
is optional, if not set an internal structure will
be allocated and free'd at object destruction
:param table: The attribute table to select attributes for
this feature
:param writeable: Not sure what this is for?
:param is2D: If True this feature has two dimensions, False if
this feature has three dimensions
:param free_points: Set this True if the provided c_points structure
should be free'd at object destruction, be aware
that no other object should free them, otherwise
you can expect a double free corruption segfault
:param free_cats: Set this True if the provided c_cats structure
should be free'd at object destruction, be aware
that no other object should free them, otherwise
you can expect a double free corruption segfault
"""
self.id = v_id # vector id
self.c_mapinfo = c_mapinfo
self.is2D = (is2D if is2D is not None else
bool(libvect.Vect_is_3d(self.c_mapinfo) != 1))
# Set True if cats and points are allocated by this object
# to free the cats and points structures on destruction
self._free_points = False
self._free_cats = False
read = False
# set c_points
if c_points is None:
self.c_points = ctypes.pointer(libvect.line_pnts())
self._free_points = True
read = True
else:
self.c_points = c_points
self._free_points = free_points
# set c_cats
if c_cats is None:
self.c_cats = ctypes.pointer(libvect.line_cats())
self._free_cats = free_cats
read = True
else:
self.c_cats = c_cats
self._free_cats = True
if self.id and self.c_mapinfo is not None and read:
self.read()
# set the attributes as last thing to do
self.attrs = None
if table is not None and self.cat is not None:
self.attrs = Attrs(self.cat, table, writeable)
def __del__(self):
"""Take care of the allocated line_pnts and line_cats allocation
"""
if self._free_points == True and self.c_points:
if self.c_points.contents.alloc_points > 0:
#print("G_free(points) [%i]"%(self.c_points.contents.alloc_points))
libgis.G_free(self.c_points.contents.x)
libgis.G_free(self.c_points.contents.y)
if self.c_points.contents.z:
libgis.G_free(self.c_points.contents.z)
if self._free_cats == True and self.c_cats:
if self.c_cats.contents.alloc_cats > 0:
#print("G_free(cats) [%i]"%(self.c_cats.contents.alloc_cats))
libgis.G_free(self.c_cats.contents.cat)
@property
def cat(self):
if self.c_cats.contents.cat:
return self.c_cats.contents.cat.contents.value
def has_topology(self):
if self.c_mapinfo is not None:
return self.c_mapinfo.contents.level == 2
else:
return False
@mapinfo_must_be_set
def read(self):
"""Read and set the coordinates of the centroid from the vector map,
using the centroid_id and calling the Vect_read_line C function"""
self.id, ftype, c_points, c_cats = c_read_line(self.id, self.c_mapinfo,
self.c_points,
self.c_cats)
def to_wkt(self):
"""Return a "well know text" (WKT) geometry string, this method uses
the GEOS implementation in the vector library. ::
>>> pnt = Point(10, 100)
>>> pnt.to_wkt()
'POINT (10.0000000000000000 100.0000000000000000)'
"""
return libvect.Vect_line_to_wkt(self.c_points, self.gtype, not self.is2D)
def to_wkb(self):
"""Return a "well know binary" (WKB) geometry byte array, this method uses
the GEOS implementation in the vector library. ::
>>> pnt = Point(10, 100)
>>> wkb = pnt.to_wkb()
>>> len(wkb)
21
"""
size = ctypes.c_size_t()
barray = libvect.Vect_line_to_wkb(self.c_points, self.gtype,
not self.is2D, ctypes.byref(size))
return(ctypes.string_at(barray, size.value))
class Point(Geo):
"""Instantiate a Point object that could be 2 or 3D, default
parameters are 0.
::
>>> pnt = Point()
>>> pnt.x
0.0
>>> pnt.y
0.0
>>> pnt.z
>>> pnt.is2D
True
>>> pnt
Point(0.000000, 0.000000)
>>> pnt.z = 0
>>> pnt.is2D
False
>>> pnt
Point(0.000000, 0.000000, 0.000000)
>>> print(pnt)
POINT Z (0.0000000000000000 0.0000000000000000 0.0000000000000000)
>>> c_points = ctypes.pointer(libvect.line_pnts())
>>> c_cats = ctypes.pointer(libvect.line_cats())
>>> p = Point(c_points = c_points, c_cats=c_cats)
>>> del p
>>> c_points = ctypes.pointer(libvect.line_pnts())
>>> c_cats = ctypes.pointer(libvect.line_cats())
>>> p = Point(c_points=c_points, c_cats=c_cats, free_points=True,
... free_cats=True)
>>> del p
..
"""
# geometry type
gtype = libvect.GV_POINT
def __init__(self, x=0, y=0, z=None, **kargs):
super(Point, self).__init__(**kargs)
if self.id and self.c_mapinfo:
self.read()
else:
self.is2D = True if z is None else False
z = z if z is not None else 0
libvect.Vect_append_point(self.c_points, x, y, z)
def _get_x(self):
return self.c_points.contents.x[0]
def _set_x(self, value):
self.c_points.contents.x[0] = value
x = property(fget=_get_x, fset=_set_x,
doc="Set and obtain x coordinate")
def _get_y(self):
return self.c_points.contents.y[0]
def _set_y(self, value):
self.c_points.contents.y[0] = value
y = property(fget=_get_y, fset=_set_y,
doc="Set and obtain y coordinate")
def _get_z(self):
if self.is2D:
return None
return self.c_points.contents.z[0]
def _set_z(self, value):
if value is None:
self.is2D = True
self.c_points.contents.z[0] = 0
else:
self.c_points.contents.z[0] = value
self.is2D = False
z = property(fget=_get_z, fset=_set_z,
doc="Set and obtain z coordinate")
def __str__(self):
return self.to_wkt()
def __repr__(self):
return "Point(%s)" % ', '.join(['%f' % coor for coor in self.coords()])
def __eq__(self, pnt):
"""Return True if the coordinates are the same.
>>> p0 = Point()
>>> p1 = Point()
>>> p2 = Point(1, 1)
>>> p0 == p1
True
>>> p1 == p2
False
"""
if isinstance(pnt, Point):
return pnt.coords() == self.coords()
return Point(*pnt).coords() == self.coords()
def __ne__(self, other):
return not self == other
# Restore Python 2 hashing beaviour on Python 3
__hash__ = object.__hash__
def coords(self):
"""Return a tuple with the point coordinates. ::
>>> pnt = Point(10, 100)
>>> pnt.coords()
(10.0, 100.0)
If the point is 2D return a x, y tuple. But if we change the ``z``
the Point object become a 3D point, therefore the method return a
x, y, z tuple. ::
>>> pnt.z = 1000.
>>> pnt.coords()
(10.0, 100.0, 1000.0)
..
"""
if self.is2D:
return self.x, self.y
else:
return self.x, self.y, self.z
def to_wkt_p(self):
"""Return a "well know text" (WKT) geometry string Python implementation. ::
>>> pnt = Point(10, 100)
>>> pnt.to_wkt_p()
'POINT(10.000000 100.000000)'
.. warning::
Only ``POINT`` (2/3D) are supported, ``POINTM`` and ``POINT`` with:
``XYZM`` are not supported yet.
"""
return "POINT(%s)" % ' '.join(['%f' % coord
for coord in self.coords()])
def distance(self, pnt):
"""Calculate distance of 2 points, using the Vect_points_distance
C function, If one of the point have z == None, return the 2D distance.
:param pnt: the point for calculate the distance
:type pnt: a Point object or a tuple with the coordinates
>>> pnt0 = Point(0, 0, 0)
>>> pnt1 = Point(1, 0)
>>> pnt0.distance(pnt1)
1.0
>>> pnt1.z = 1
>>> pnt1
Point(1.000000, 0.000000, 1.000000)
>>> pnt0.distance(pnt1)
1.4142135623730951
"""
if self.is2D or pnt.is2D:
return libvect.Vect_points_distance(self.x, self.y, 0,
pnt.x, pnt.y, 0, 0)
else:
return libvect.Vect_points_distance(self.x, self.y, self.z,
pnt.x, pnt.y, pnt.z, 1)
def buffer(self, dist=None, dist_x=None, dist_y=None, angle=0,
round_=True, tol=0.1):
"""Return the buffer area around the point, using the
``Vect_point_buffer2`` C function.
:param dist: the distance around the point
:type dist: num
:param dist_x: the distance along x
:type dist_x: num
:param dist_y: the distance along y
:type dist_y: num
:param angle: the angle between 0x and major axis
:type angle: num
:param round_: to make corners round
:type round_: bool
:param tol: fix the maximum distance between theoretical arc and
output segments
:type tol: float
:returns: the buffer as Area object
>>> pnt = Point(0, 0)
>>> boundary, centroid = pnt.buffer(10)
>>> boundary #doctest: +ELLIPSIS
Line([Point(10.000000, 0.000000),...Point(10.000000, 0.000000)])
>>> centroid
Point(0.000000, 0.000000)
"""
if dist is not None:
dist_x = dist
dist_y = dist
elif not dist_x or not dist_y:
raise TypeError('TypeError: buffer expected 1 arguments, got 0')
bound = Line()
p_points = ctypes.pointer(bound.c_points)
libvect.Vect_point_buffer2(self.x, self.y,
dist_x, dist_y,
angle, int(round_), tol,
p_points)
return (bound, self)
class Line(Geo):
"""Instantiate a new Line with a list of tuple, or with a list of Point. ::
>>> line = Line([(0, 0), (1, 1), (2, 0), (1, -1)])
>>> line #doctest: +NORMALIZE_WHITESPACE
Line([Point(0.000000, 0.000000),
Point(1.000000, 1.000000),
Point(2.000000, 0.000000),
Point(1.000000, -1.000000)])
..
"""
# geometry type
gtype = libvect.GV_LINE
def __init__(self, points=None, **kargs):
super(Line, self).__init__(**kargs)
if points is not None:
for pnt in points:
self.append(pnt)
def __getitem__(self, key):
"""Get line point of given index, slice allowed. ::
>>> line = Line([(0, 0), (1, 1), (2, 2), (3, 3)])
>>> line[1]
Point(1.000000, 1.000000)
>>> line[-1]
Point(3.000000, 3.000000)
>>> line[:2]
[Point(0.000000, 0.000000), Point(1.000000, 1.000000)]
..
"""
#TODO:
# line[0].x = 10 is not working
#pnt.c_px = ctypes.pointer(self.c_points.contents.x[indx])
# pnt.c_px = ctypes.cast(id(self.c_points.contents.x[indx]),
# ctypes.POINTER(ctypes.c_double))
if isinstance(key, slice):
#import pdb; pdb.set_trace()
#Get the start, stop, and step from the slice
return [Point(self.c_points.contents.x[indx],
self.c_points.contents.y[indx],
None if self.is2D else self.c_points.contents.z[indx])
for indx in range(*key.indices(len(self)))]
elif isinstance(key, int):
if key < 0: # Handle negative indices
key += self.c_points.contents.n_points
if key >= self.c_points.contents.n_points:
raise IndexError('Index out of range')
return Point(self.c_points.contents.x[key],
self.c_points.contents.y[key],
None if self.is2D else self.c_points.contents.z[key])
else:
raise ValueError("Invalid argument type: %r." % key)
def __setitem__(self, indx, pnt):
"""Change the coordinate of point. ::
>>> line = Line([(0, 0), (1, 1)])
>>> line[0] = (2, 2)
>>> line
Line([Point(2.000000, 2.000000), Point(1.000000, 1.000000)])
..
"""
x, y, z = get_xyz(pnt)
self.c_points.contents.x[indx] = x
self.c_points.contents.y[indx] = y
self.c_points.contents.z[indx] = z
def __iter__(self):
"""Return a Point generator of the Line"""
return (self.__getitem__(i) for i in range(self.__len__()))
def __len__(self):
"""Return the number of points of the line."""
return self.c_points.contents.n_points
def __str__(self):
return self.to_wkt()
def __repr__(self):
return "Line([%s])" % ', '.join([repr(pnt) for pnt in self.__iter__()])
def point_on_line(self, distance, angle=0, slope=0):
"""Return a Point object on line in the specified distance, using the
`Vect_point_on_line` C function.
Raise a ValueError If the distance exceed the Line length. ::
>>> line = Line([(0, 0), (1, 1)])
>>> line.point_on_line(5) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: The distance exceed the length of the line,
that is: 1.414214
>>> line.point_on_line(1)
Point(0.707107, 0.707107)
..
"""
# instantiate an empty Point object
maxdist = self.length()
if distance > maxdist:
str_err = "The distance exceed the length of the line, that is: %f"
raise ValueError(str_err % maxdist)
pnt = Point(0, 0, -9999)
if not libvect.Vect_point_on_line(self.c_points, distance,
pnt.c_points.contents.x,
pnt.c_points.contents.y,
pnt.c_points.contents.z,
angle, slope):
raise ValueError("Vect_point_on_line give an error.")
pnt.is2D = self.is2D
return pnt
@mapinfo_must_be_set
def alive(self):
"""Return True if this line is alive or False if this line is
dead or its index is out of range.
"""
return(bool(libvect.Vect_line_alive(self.c_mapinfo, self.id)))
def append(self, pnt):
"""Appends one point to the end of a line, using the
``Vect_append_point`` C function.
:param pnt: the point to add to line
:type pnt: a Point object or a tuple with the coordinates
>>> line = Line()
>>> line.append((10, 100))
>>> line
Line([Point(10.000000, 100.000000)])
>>> line.append((20, 200))
>>> line
Line([Point(10.000000, 100.000000), Point(20.000000, 200.000000)])
Like python list.
"""
x, y, z = get_xyz(pnt)
libvect.Vect_append_point(self.c_points, x, y, z)
def bbox(self, bbox=None):
"""Return the bounding box of the line, using ``Vect_line_box``
C function. ::
>>> line = Line([(0, 0), (0, 1), (2, 1), (2, 0)])
>>> bbox = line.bbox()
>>> bbox
Bbox(1.0, 0.0, 2.0, 0.0)
..
"""
bbox = bbox if bbox else Bbox()
libvect.Vect_line_box(self.c_points, bbox.c_bbox)
return bbox
def extend(self, line, forward=True):
"""Appends points to the end of a line.
:param line: it is possible to extend a line, give a list of points,
or directly with a line_pnts struct.
:type line: Line object ot list of points
:param forward: if forward is True the line is extend forward otherwise
is extend backward. The method use the
`Vect_append_points` C function.
:type forward: bool
>>> line = Line([(0, 0), (1, 1)])
>>> line.extend( Line([(2, 2), (3, 3)]) )
>>> line #doctest: +NORMALIZE_WHITESPACE
Line([Point(0.000000, 0.000000),
Point(1.000000, 1.000000),
Point(2.000000, 2.000000),
Point(3.000000, 3.000000)])
"""
# set direction
if forward:
direction = libvect.GV_FORWARD
else:
direction = libvect.GV_BACKWARD
# check if is a Line object
if isinstance(line, Line):
c_points = line.c_points
else:
# instantiate a Line object
lin = Line()
for pnt in line:
# add the points to the line
lin.append(pnt)
c_points = lin.c_points
libvect.Vect_append_points(self.c_points, c_points, direction)
def insert(self, indx, pnt):
"""Insert new point at index position and move all old points at
that position and above up, using ``Vect_line_insert_point``
C function.
:param indx: the index where add new point
:type indx: int
:param pnt: the point to add
:type pnt: a Point object
>>> line = Line([(0, 0), (1, 1)])
>>> line.insert(0, Point(1.000000, -1.000000) )
>>> line #doctest: +NORMALIZE_WHITESPACE
Line([Point(1.000000, -1.000000),
Point(0.000000, 0.000000),
Point(1.000000, 1.000000)])
"""
if indx < 0: # Handle negative indices
indx += self.c_points.contents.n_points
if indx >= self.c_points.contents.n_points:
raise IndexError('Index out of range')
x, y, z = get_xyz(pnt)
libvect.Vect_line_insert_point(self.c_points, indx, x, y, z)
def length(self):
"""Calculate line length, 3D-length in case of 3D vector line, using
`Vect_line_length` C function. ::
>>> line = Line([(0, 0), (1, 1), (0, 1)])
>>> line.length()
2.414213562373095
..
"""
return libvect.Vect_line_length(self.c_points)
def length_geodesic(self):
"""Calculate line length, usig `Vect_line_geodesic_length` C function.
::
>>> line = Line([(0, 0), (1, 1), (0, 1)])
>>> line.length_geodesic()
2.414213562373095
..
"""
return libvect.Vect_line_geodesic_length(self.c_points)
def distance(self, pnt):
"""Calculate the distance between line and a point.
:param pnt: the point to calculate distance
:type pnt: a Point object or a tuple with the coordinates
Return a namedtuple with:
* point: the closest point on the line,
* dist: the distance between these two points,
* spdist: distance to point on line from segment beginning
* sldist: distance to point on line form line beginning along line
The distance is compute using the ``Vect_line_distance`` C function.
>>> point = Point(2.3, 0.5)
>>> line = Line([(0, 0), (2, 0), (3, 0)])
>>> line.distance(point) #doctest: +NORMALIZE_WHITESPACE
LineDist(point=Point(2.300000, 0.000000),
dist=0.5, spdist=0.2999999999999998, sldist=2.3)
"""
# instantite outputs
cx = ctypes.c_double(0)
cy = ctypes.c_double(0)
cz = ctypes.c_double(0)
dist = ctypes.c_double(0)
sp_dist = ctypes.c_double(0)
lp_dist = ctypes.c_double(0)
libvect.Vect_line_distance(self.c_points,
pnt.x, pnt.y, 0 if pnt.is2D else pnt.z,
0 if self.is2D else 1,
ctypes.byref(cx), ctypes.byref(cy),
ctypes.byref(cz), ctypes.byref(dist),
ctypes.byref(sp_dist),
ctypes.byref(lp_dist))
# instantiate the Point class
point = Point(cx.value, cy.value, cz.value)
point.is2D = self.is2D
return LineDist(point, dist.value, sp_dist.value, lp_dist.value)
@mapinfo_must_be_set
def first_cat(self):
"""Fetches FIRST category number for given vector line and field, using
the ``Vect_get_line_cat`` C function.
.. warning::
Not implemented yet.
"""
# TODO: add this method.
# libvect.Vect_get_line_cat(self.c_mapinfo, self.id, self.field)
pass
def pop(self, indx):
"""Return the point in the index position and remove from the Line.
:param indx: the index where add new point
:type indx: int
>>> line = Line([(0, 0), (1, 1), (2, 2)])
>>> midle_pnt = line.pop(1)
>>> midle_pnt #doctest: +NORMALIZE_WHITESPACE
Point(1.000000, 1.000000)
>>> line #doctest: +NORMALIZE_WHITESPACE
Line([Point(0.000000, 0.000000), Point(2.000000, 2.000000)])
"""
if indx < 0: # Handle negative indices
indx += self.c_points.contents.n_points
if indx >= self.c_points.contents.n_points:
raise IndexError('Index out of range')
pnt = self.__getitem__(indx)
libvect.Vect_line_delete_point(self.c_points, indx)
return pnt
def delete(self, indx):
"""Remove the point in the index position.
:param indx: the index where add new point
:type indx: int
>>> line = Line([(0, 0), (1, 1), (2, 2)])
>>> line.delete(-1)
>>> line #doctest: +NORMALIZE_WHITESPACE
Line([Point(0.000000, 0.000000), Point(1.000000, 1.000000)])
"""
if indx < 0: # Handle negative indices
indx += self.c_points.contents.n_points
if indx >= self.c_points.contents.n_points:
raise IndexError('Index out of range')
libvect.Vect_line_delete_point(self.c_points, indx)
def prune(self):
"""Remove duplicate points, i.e. zero length segments, using
`Vect_line_prune` C function. ::
>>> line = Line([(0, 0), (1, 1), (1, 1), (2, 2)])
>>> line.prune()
>>> line #doctest: +NORMALIZE_WHITESPACE
Line([Point(0.000000, 0.000000),
Point(1.000000, 1.000000),
Point(2.000000, 2.000000)])
..
"""
libvect.Vect_line_prune(self.c_points)
def prune_thresh(self, threshold):
"""Remove points in threshold, using the ``Vect_line_prune_thresh``
C function.
:param threshold: the threshold value where prune points
:type threshold: num
>>> line = Line([(0, 0), (1.0, 1.0), (1.2, 0.9), (2, 2)])
>>> line.prune_thresh(0.5)
>>> line #doctest: +SKIP +NORMALIZE_WHITESPACE
Line([Point(0.000000, 0.000000),
Point(1.000000, 1.000000),
Point(2.000000, 2.000000)])
.. warning ::
prune_thresh is not working yet.
"""
libvect.Vect_line_prune(self.c_points, ctypes.c_double(threshold))
def remove(self, pnt):
"""Delete point at given index and move all points above down, using
`Vect_line_delete_point` C function.
:param pnt: the point to remove
:type pnt: a Point object or a tuple with the coordinates
>>> line = Line([(0, 0), (1, 1), (2, 2)])
>>> line.remove((2, 2))
>>> line[-1] #doctest: +NORMALIZE_WHITESPACE
Point(1.000000, 1.000000)
..
"""
for indx, point in enumerate(self.__iter__()):
if pnt == point:
libvect.Vect_line_delete_point(self.c_points, indx)
return
raise ValueError('list.remove(x): x not in list')
def reverse(self):
"""Reverse the order of vertices, using `Vect_line_reverse`
C function. ::
>>> line = Line([(0, 0), (1, 1), (2, 2)])
>>> line.reverse()
>>> line #doctest: +NORMALIZE_WHITESPACE
Line([Point(2.000000, 2.000000),
Point(1.000000, 1.000000),
Point(0.000000, 0.000000)])
..
"""
libvect.Vect_line_reverse(self.c_points)
def segment(self, start, end):
"""Create line segment. using the ``Vect_line_segment`` C function.
:param start: distance from the beginning of the line where
the segment start
:type start: float
:param end: distance from the beginning of the line where
the segment end
:type end: float
::
# x (1, 1)
# |
# |-
# |
# x--------x (1, 0)
# (0, 0) ^
>>> line = Line([(0, 0), (1, 0), (1, 1)])
>>> line.segment(0.5, 1.5) #doctest: +NORMALIZE_WHITESPACE
Line([Point(0.500000, 0.000000),
Point(1.000000, 0.000000),
Point(1.000000, 0.500000)])
"""
line = Line()
libvect.Vect_line_segment(self.c_points, start, end, line.c_points)
return line
def to_list(self):
"""Return a list of tuple. ::
>>> line = Line([(0, 0), (1, 1), (2, 0), (1, -1)])
>>> line.to_list()
[(0.0, 0.0), (1.0, 1.0), (2.0, 0.0), (1.0, -1.0)]
..
"""
return [pnt.coords() for pnt in self.__iter__()]
def to_array(self):
"""Return an array of coordinates. ::
>>> line = Line([(0, 0), (1, 1), (2, 0), (1, -1)])
>>> line.to_array() #doctest: +NORMALIZE_WHITESPACE
array([[ 0., 0.],
[ 1., 1.],
[ 2., 0.],
[ 1., -1.]])
..
"""
return np.array(self.to_list())
def to_wkt_p(self):
"""Return a Well Known Text string of the line. ::
>>> line = Line([(0, 0), (1, 1), (1, 2)])
>>> line.to_wkt_p() #doctest: +ELLIPSIS
'LINESTRING(0.000000 0.000000, ..., 1.000000 2.000000)'
..
"""
return "LINESTRING(%s)" % ', '.join([
' '.join(['%f' % coord for coord in pnt.coords()])
for pnt in self.__iter__()])
def from_wkt(self, wkt):
"""Create a line reading a WKT string.
:param wkt: the WKT string containing the LINESTRING
:type wkt: str
>>> line = Line()
>>> line.from_wkt("LINESTRING(0 0,1 1,1 2)")
>>> line #doctest: +NORMALIZE_WHITESPACE
Line([Point(0.000000, 0.000000),
Point(1.000000, 1.000000),
Point(1.000000, 2.000000)])
..
"""
match = re.match('LINESTRING\((.*)\)', wkt)
if match:
self.reset()
for coord in match.groups()[0].strip().split(','):
self.append(tuple([float(e) for e in coord.split(' ')]))
else:
return None
def buffer(self, dist=None, dist_x=None, dist_y=None,
angle=0, round_=True, caps=True, tol=0.1):
"""Return the buffer area around the line, using the
``Vect_line_buffer2`` C function.
:param dist: the distance around the line
:type dist: num
:param dist_x: the distance along x
:type dist_x: num
:param dist_y: the distance along y
:type dist_y: num
:param angle: the angle between 0x and major axis
:type angle: num
:param round_: to make corners round
:type round_: bool
:param tol: fix the maximum distance between theoretical arc and
output segments
:type tol: float
:returns: the buffer as Area object
>>> line = Line([(0, 0), (0, 2)])
>>> boundary, centroid, isles = line.buffer(10)
>>> boundary #doctest: +ELLIPSIS
Line([Point(-10.000000, 0.000000),...Point(-10.000000, 0.000000)])
>>> centroid #doctest: +NORMALIZE_WHITESPACE
Point(0.000000, 0.000000)
>>> isles
[]
..
"""
if dist is not None:
dist_x = dist
dist_y = dist
elif not dist_x or not dist_y:
raise TypeError('TypeError: buffer expected 1 arguments, got 0')
p_bound = ctypes.pointer(ctypes.pointer(libvect.line_pnts()))
pp_isle = ctypes.pointer(ctypes.pointer(
ctypes.pointer(libvect.line_pnts())))
n_isles = ctypes.pointer(ctypes.c_int())
libvect.Vect_line_buffer2(self.c_points,
dist_x, dist_y, angle,
int(round_), int(caps), tol,
p_bound, pp_isle, n_isles)
boundary = Line(c_points=p_bound.contents)
isles = [Line(c_points=pp_isle[i].contents)
for i in range(n_isles.contents.value) if pp_isle[i]]
return(boundary, self[0], isles)
def reset(self):
"""Reset line, using `Vect_reset_line` C function. ::
>>> line = Line([(0, 0), (1, 1), (2, 0), (1, -1)])
>>> len(line)
4
>>> line.reset()
>>> len(line)
0
>>> line
Line([])
..
"""
libvect.Vect_reset_line(self.c_points)
@mapinfo_must_be_set
def nodes(self):
"""Return the start and end nodes of the line
This method requires topology build.
return: A tuple of Node objects that represent the
start and end point of this line.
"""
if self.has_topology():
n1 = ctypes.c_int()
n2 = ctypes.c_int()
libvect.Vect_get_line_nodes(self.c_mapinfo, self.id,
ctypes.byref(n1),
ctypes.byref(n2))
return (Node(n1.value, self.c_mapinfo),
Node(n2.value, self.c_mapinfo))
class Node(object):
"""Node class for topological analysis of line neighbors.
Objects of this class will be returned by the node() function
of a Line object.
All methods in this class require a proper setup of the Node
objects. Hence, the correct id and a valid pointer to a mapinfo
object must be provided in the constructions. Otherwise a segfault
may happen.
"""
def __init__(self, v_id, c_mapinfo, **kwords):
"""Construct a Node object
param v_id: The unique node id
param c_mapinfo: A valid pointer to the mapinfo object
param **kwords: Ignored
"""
self.id = v_id # vector id
self.c_mapinfo = c_mapinfo
self._setup()
@mapinfo_must_be_set
def _setup(self):
self.is2D = bool(libvect.Vect_is_3d(self.c_mapinfo) != 1)
self.nlines = libvect.Vect_get_node_n_lines(self.c_mapinfo, self.id)
def __len__(self):
return self.nlines
def __iter__(self):
return self.ilines()
def __repr__(self):
return "Node(%d)" % self.id
@mapinfo_must_be_set
def alive(self):
"""Return True if this node is alive or False if this node is
dead or its index is out of range.
"""
return(bool(libvect.Vect_node_alive(self.c_mapinfo, self.id)))
@mapinfo_must_be_set
def coords(self):
"""Return a tuple with the node coordinates."""
x = ctypes.c_double()
y = ctypes.c_double()
z = ctypes.c_double()
libvect.Vect_get_node_coor(self.c_mapinfo, self.id, ctypes.byref(x),
ctypes.byref(y), ctypes.byref(z))
return (x.value, y.value) if self.is2D else (x.value, y.value, z.value)
def to_wkt(self):
"""Return a "well know text" (WKT) geometry string. ::
"""
return "POINT(%s)" % ' '.join(['%f' % coord
for coord in self.coords()])
def to_wkb(self):
"""Return a "well know binary" (WKB) geometry array. ::
TODO: Must be implemented
"""
raise Exception("Not implemented")
def ilines(self, only_in=False, only_out=False):
"""Return a generator with all lines id connected to a node.
The line id is negative if line is ending on the node and positive if
starting from the node.
:param only_in: Return only the lines that are ending in the node
:type only_in: bool
:param only_out: Return only the lines that are starting in the node
:type only_out: bool
"""
for iline in range(self.nlines):
lid = libvect.Vect_get_node_line(self.c_mapinfo, self.id, iline)
if (not only_in and lid > 0) or (not only_out and lid < 0):
yield lid
@mapinfo_must_be_set
def lines(self, only_in=False, only_out=False):
"""Return a generator with all lines connected to a node.
:param only_in: Return only the lines that are ending in the node
:type only_in: bool
:param only_out: Return only the lines that are starting in the node
:type only_out: bool
"""
for iline in self.ilines(only_in, only_out):
yield Line(v_id=abs(iline), c_mapinfo=self.c_mapinfo)
@mapinfo_must_be_set
def angles(self):
"""Return a generator with all lines angles in a node."""
for iline in range(self.nlines):
yield libvect.Vect_get_node_line_angle(self.c_mapinfo,
self.id, iline)
class Boundary(Line):
"""
"""
# geometry type
gtype = libvect.GV_BOUNDARY
def __init__(self, **kargs):
super(Boundary, self).__init__(**kargs)
v_id = kargs.get('v_id', 0)
self.dir = libvect.GV_FORWARD if v_id > 0 else libvect.GV_BACKWARD
self.c_left = ctypes.pointer(ctypes.c_int())
self.c_right = ctypes.pointer(ctypes.c_int())
@property
def left_area_id(self):
"""Left side area id, only available after read_area_ids() was called"""
return self.c_left.contents.value
@property
def right_area_id(self):
"""Right side area id, only available after read_area_ids() was called"""
return self.c_right.contents.value
def __repr__(self):
return "Boundary([%s])" % ', '.join([repr(pnt) for pnt in self.__iter__()])
@mapinfo_must_be_set
def _centroid(self, side, idonly=False):
if side > 0:
v_id = libvect.Vect_get_area_centroid(self.c_mapinfo, side)
v_id = v_id if v_id else None
if idonly:
return v_id
else:
cntr = Centroid(v_id=v_id, c_mapinfo=self.c_mapinfo)
return cntr
def left_centroid(self, idonly=False):
"""Return left centroid
:param idonly: True to return only the cat of feature
:type idonly: bool
"""
return self._centroid(self.c_left.contents.value, idonly)
def right_centroid(self, idonly=False):
"""Return right centroid
:param idonly: True to return only the cat of feature
:type idonly: bool
"""
return self._centroid(self.c_right.contents.value, idonly)
@mapinfo_must_be_set
def read_area_ids(self):
"""Read and return left and right area ids of the boundary"""
libvect.Vect_get_line_areas(self.c_mapinfo, self.id,
self.c_left, self.c_right)
return self.c_left.contents.value, self.c_right.contents.value
def area(self):
"""Return the area of the polygon.
>>> bound = Boundary(points=[(0, 0), (0, 2), (2, 2), (2, 0),
... (0, 0)])
>>> bound.area()
4.0
"""
libgis.G_begin_polygon_area_calculations()
return libgis.G_area_of_polygon(self.c_points.contents.x,
self.c_points.contents.y,
self.c_points.contents.n_points)
class Centroid(Point):
"""The Centroid class inherit from the Point class.
Centroid contains an attribute with the C Map_info struct, and attributes
with the id of the Area. ::
>>> centroid = Centroid(x=0, y=10)
>>> centroid
Centoid(0.000000, 10.000000)
>>> from grass.pygrass.vector import VectorTopo
>>> test_vect = VectorTopo(test_vector_name)
>>> test_vect.open(mode='r')
>>> centroid = Centroid(v_id=18, c_mapinfo=test_vect.c_mapinfo)
>>> centroid
Centoid(3.500000, 3.500000)
>>> test_vect.close()
..
"""
# geometry type
gtype = libvect.GV_CENTROID
def __init__(self, area_id=None, **kargs):
super(Centroid, self).__init__(**kargs)
self.area_id = area_id
if self.id and self.c_mapinfo and self.area_id is None:
self.area_id = self._area_id()
elif self.c_mapinfo and self.area_id and self.id is None:
self.id = self._centroid_id()
if self.area_id is not None:
self.read()
#self.c_pline = ctypes.pointer(libvect.P_line()) if topology else None
def __repr__(self):
return "Centoid(%s)" % ', '.join(['%f' % co for co in self.coords()])
@mapinfo_must_be_set
def _centroid_id(self):
"""Return the centroid_id, using the c_mapinfo and an area_id
attributes of the class, and calling the Vect_get_area_centroid
C function, if no centroid_id were found return None"""
centroid_id = libvect.Vect_get_area_centroid(self.c_mapinfo,
self.area_id)
return centroid_id if centroid_id != 0 else None
@mapinfo_must_be_set
def _area_id(self):
"""Return the area_id, using the c_mapinfo and an centroid_id
attributes of the class, and calling the Vect_centroid_area
C function, if no area_id were found return None"""
area_id = libvect.Vect_get_centroid_area(self.c_mapinfo,
self.id)
return area_id if area_id != 0 else None
class Isle(Geo):
"""An Isle is an area contained by another area.
"""
def __init__(self, **kargs):
super(Isle, self).__init__(**kargs)
#self.area_id = area_id
def __repr__(self):
return "Isle(%d)" % (self.id)
@mapinfo_must_be_set
def boundaries(self):
"""Return a list of boundaries"""
ilist = Ilist()
libvect.Vect_get_isle_boundaries(self.c_mapinfo, self.id,
ilist.c_ilist)
return ilist
@mapinfo_must_be_set
def bbox(self, bbox=None):
"""Return bounding box of Isle"""
bbox = bbox if bbox else Bbox()
libvect.Vect_get_isle_box(self.c_mapinfo, self.id, bbox.c_bbox)
return bbox
@mapinfo_must_be_set
def points(self):
"""Return a Line object with the outer ring points"""
line = Line()
libvect.Vect_get_isle_points(self.c_mapinfo, self.id, line.c_points)
return line
def to_wkt(self):
"""Return a Well Known Text string of the isle. ::
For now the outer ring is returned
TODO: Implement inner rings detected from isles
"""
line = self.points()
return "Polygon((%s))" % ', '.join([
' '.join(['%f' % coord for coord in pnt])
for pnt in line.to_list()])
def to_wkb(self):
"""Return a "well know text" (WKB) geometry array. ::
"""
raise Exception("Not implemented")
@mapinfo_must_be_set
def points_geos(self):
"""Return a Line object with the outer ring points
"""
return libvect.Vect_get_isle_points_geos(self.c_mapinfo, self.id)
@mapinfo_must_be_set
def area_id(self):
"""Returns area id for isle."""
return libvect.Vect_get_isle_area(self.c_mapinfo, self.id)
@mapinfo_must_be_set
def alive(self):
"""Check if isle is alive or dead (topology required)"""
return bool(libvect.Vect_isle_alive(self.c_mapinfo, self.id))
@mapinfo_must_be_set
def contain_pnt(self, pnt):
"""Check if point is in area.
:param pnt: the point to remove
:type pnt: a Point object or a tuple with the coordinates
"""
bbox = self.bbox()
return bool(libvect.Vect_point_in_island(pnt.x, pnt.y,
self.c_mapinfo, self.id,
bbox.c_bbox.contents))
def area(self):
"""Return the area value of an Isle"""
border = self.points()
return libgis.G_area_of_polygon(border.c_points.contents.x,
border.c_points.contents.y,
border.c_points.contents.n_points)
def perimeter(self):
"""Return the perimeter value of an Isle.
"""
border = self.points()
return libvect.Vect_line_geodesic_length(border.c_points)
class Isles(object):
def __init__(self, c_mapinfo, area_id=None):
self.c_mapinfo = c_mapinfo
self.area_id = area_id
self._isles_id = None
self._isles = None
if area_id:
self._isles_id = self.isles_ids()
self._isles = self.isles()
@mapinfo_must_be_set
def __len__(self):
return libvect.Vect_get_area_num_isles(self.c_mapinfo, self.area_id)
def __repr__(self):
return "Isles(%r)" % self.area_id
def __getitem__(self, key):
if self._isles is None:
self.isles()
return self._isles[key]
@mapinfo_must_be_set
def isles_ids(self):
"""Return the id of isles"""
return [libvect.Vect_get_area_isle(self.c_mapinfo, self.area_id, i)
for i in range(self.__len__())]
@mapinfo_must_be_set
def isles(self):
"""Return isles"""
return [Isle(v_id=isle_id, c_mapinfo=self.c_mapinfo)
for isle_id in self._isles_id]
class Area(Geo):
"""
Vect_build_line_area,
Vect_find_area,
Vect_get_area_box,
Vect_get_area_points_geos,
Vect_centroid_area,
Vect_get_isle_area,
Vect_get_line_areas,
Vect_get_num_areas,
Vect_get_point_in_area,
Vect_isle_find_area,
Vect_point_in_area,
Vect_point_in_area_outer_ring,
Vect_read_area_geos,
Vect_remove_small_areas,
Vect_select_areas_by_box,
Vect_select_areas_by_polygon
"""
# geometry type
gtype = libvect.GV_AREA
def __init__(self, **kargs):
super(Area, self).__init__(**kargs)
# set the attributes
#if self.attrs and self.cat:
# self.attrs.cat = self.cat
def __repr__(self):
return "Area(%d)" % self.id if self.id else "Area( )"
@property
def cat(self):
centroid = self.centroid()
return centroid.cat if centroid else None
@mapinfo_must_be_set
def points(self, line=None):
"""Return a Line object with the outer ring
:param line: a Line object to fill with info from points of area
:type line: a Line object
"""
line = Line() if line is None else line
libvect.Vect_get_area_points(self.c_mapinfo, self.id, line.c_points)
return line
@mapinfo_must_be_set
def centroid(self):
"""Return the centroid
:param centroid: a Centroid object to fill with info from centroid of area
:type centroid: a Centroid object
"""
centroid_id = libvect.Vect_get_area_centroid(self.c_mapinfo, self.id)
if centroid_id:
return Centroid(v_id=centroid_id, c_mapinfo=self.c_mapinfo,
area_id=self.id)
@mapinfo_must_be_set
def num_isles(self):
return libvect.Vect_get_area_num_isles(self.c_mapinfo, self.id)
@mapinfo_must_be_set
def isles(self, isles=None):
"""Return a list of islands located in this area"""
if isles is not None:
isles.area_id = self.id
return isles
return Isles(self.c_mapinfo, self.id)
@mapinfo_must_be_set
def area(self):
"""Returns area of area without areas of isles.
double Vect_get_area_area (const struct Map_info \*Map, int area)
"""
return libvect.Vect_get_area_area(self.c_mapinfo, self.id)
@mapinfo_must_be_set
def alive(self):
"""Check if area is alive or dead (topology required)
"""
return bool(libvect.Vect_area_alive(self.c_mapinfo, self.id))
@mapinfo_must_be_set
def bbox(self, bbox=None):
"""Return the Bbox of area
:param bbox: a Bbox object to fill with info from bounding box of area
:type bbox: a Bbox object
"""
bbox = bbox if bbox else Bbox()
libvect.Vect_get_area_box(self.c_mapinfo, self.id, bbox.c_bbox)
return bbox
@mapinfo_must_be_set
def buffer(self, dist=None, dist_x=None, dist_y=None,
angle=0, round_=True, caps=True, tol=0.1):
"""Return the buffer area around the area, using the
``Vect_area_buffer2`` C function.
:param dist: the distance around the area
:type dist: num
:param dist_x: the distance along x
:type dist_x: num
:param dist_y: the distance along y
:type dist_y: num
:param angle: the angle between 0x and major axis
:type angle: num
:param round_: to make corners round
:type round_: bool
:param tol: fix the maximum distance between theoretical arc and
output segments
:type tol: float
:returns: the buffer as line, centroid, isles object tuple
"""
if dist is not None:
dist_x = dist
dist_y = dist
elif not dist_x or not dist_y:
raise TypeError('TypeError: buffer expected 1 arguments, got 0')
p_bound = ctypes.pointer(ctypes.pointer(libvect.line_pnts()))
pp_isle = ctypes.pointer(ctypes.pointer(
ctypes.pointer(libvect.line_pnts())))
n_isles = ctypes.pointer(ctypes.c_int())
libvect.Vect_area_buffer2(self.c_mapinfo, self.id,
dist_x, dist_y, angle,
int(round_), int(caps), tol,
p_bound, pp_isle, n_isles)
return (Line(c_points=p_bound.contents),
self.centroid,
[Line(c_points=pp_isle[i].contents)
for i in range(n_isles.contents.value)])
@mapinfo_must_be_set
def boundaries(self, ilist=False):
"""Creates list of boundaries for given area.
int Vect_get_area_boundaries(const struct Map_info \*Map,
int area, struct ilist \*List)
"""
ilst = Ilist()
libvect.Vect_get_area_boundaries(self.c_mapinfo, self.id,
ilst.c_ilist)
if ilist:
return ilist
return [Boundary(v_id=abs(v_id), c_mapinfo=self.c_mapinfo) for v_id in ilst]
def to_wkt(self):
"""Return a "well know text" (WKT) area string, this method uses
the GEOS implementation in the vector library. ::
"""
return libvect.Vect_read_area_to_wkt(self.c_mapinfo, self.id)
def to_wkb(self):
"""Return a "well know binary" (WKB) area byte array, this method uses
the GEOS implementation in the vector library. ::
"""
size = ctypes.c_size_t()
barray = libvect.Vect_read_area_to_wkb(self.c_mapinfo, self.id,
ctypes.byref(size))
return(ctypes.string_at(barray, size.value))
@mapinfo_must_be_set
def cats(self, cats=None):
"""Get area categories.
:param cats: a Cats object to fill with info with area categories
:type cats: a Cats object
"""
cats = cats if cats else Cats()
libvect.Vect_get_area_cats(self.c_mapinfo, self.id, cats.c_cats)
return cats
def get_first_cat(self):
"""Find FIRST category of given field and area.
int Vect_get_area_cat(const struct Map_info \*Map, int area, int field)
..warning: Not implemented
"""
pass
@mapinfo_must_be_set
def contains_point(self, point, bbox=None):
"""Check if point is in area.
:param point: the point to analyze
:type point: a Point object or a tuple with the coordinates
:param bbox: the bounding box where run the analysis
:type bbox: a Bbox object
"""
bbox = bbox if bbox else self.bbox()
return bool(libvect.Vect_point_in_area(point.x, point.y,
self.c_mapinfo, self.id,
bbox.c_bbox))
@mapinfo_must_be_set
def perimeter(self):
"""Calculate area perimeter.
:return: double Vect_area_perimeter (const struct line_pnts \*Points)
"""
border = self.points()
return libvect.Vect_line_geodesic_length(border.c_points)
def read(self):
pass
#
# Define a dictionary to convert the feature type to name and or object
#
GV_TYPE = {libvect.GV_POINT: {'label': 'point', 'obj': Point},
libvect.GV_LINE: {'label': 'line', 'obj': Line},
libvect.GV_BOUNDARY: {'label': 'boundary', 'obj': Boundary},
libvect.GV_CENTROID: {'label': 'centroid', 'obj': Centroid},
libvect.GV_FACE: {'label': 'face', 'obj': None},
libvect.GV_KERNEL: {'label': 'kernel', 'obj': None},
libvect.GV_AREA: {'label': 'area', 'obj': Area},
libvect.GV_VOLUME: {'label': 'volume', 'obj': None}, }
GEOOBJ = {"areas": Area,
"dblinks": None,
"faces": None,
"holes": None,
"boundaries": Boundary,
"islands": Isle,
"kernels": None,
"line_points": None,
"points": Point,
"lines": Line,
"nodes": Node,
"volumes": None}
def c_read_next_line(c_mapinfo, c_points, c_cats):
v_id = c_mapinfo.contents.next_line
v_id = v_id if v_id != 0 else None
ftype = libvect.Vect_read_next_line(c_mapinfo, c_points, c_cats)
if ftype == -2:
raise StopIteration()
if ftype == -1:
raise
return ftype, v_id, c_points, c_cats
def read_next_line(c_mapinfo, table=None, writeable=False,
c_points=None, c_cats=None, is2D=True):
"""Return the next geometry feature of a vector map."""
# Take care of good memory management
free_points = False
if c_points == None:
free_points = True
free_cats = False
if c_cats == None:
free_cats = True
c_points = c_points if c_points else ctypes.pointer(libvect.line_pnts())
c_cats = c_cats if c_cats else ctypes.pointer(libvect.line_cats())
ftype, v_id, c_points, c_cats = c_read_next_line(c_mapinfo, c_points,
c_cats)
return GV_TYPE[ftype]['obj'](v_id=v_id, c_mapinfo=c_mapinfo,
c_points=c_points, c_cats=c_cats,
table=table, writeable=writeable, is2D=is2D,
free_points=free_points, free_cats=free_cats)
def c_read_line(feature_id, c_mapinfo, c_points, c_cats):
nmax = libvect.Vect_get_num_lines(c_mapinfo)
if feature_id < 0: # Handle negative indices
feature_id += nmax + 1
if feature_id > nmax:
raise IndexError('Index out of range')
if feature_id > 0:
ftype = libvect.Vect_read_line(c_mapinfo, c_points, c_cats, feature_id)
return feature_id, ftype, c_points, c_cats
else:
raise ValueError('The index must be >0, %r given.' % feature_id)
def read_line(feature_id, c_mapinfo, table=None, writeable=False,
c_points=None, c_cats=None, is2D=True):
"""Return a geometry object given the feature id and the c_mapinfo.
"""
# Take care of good memory management
free_points = False
if c_points == None:
free_points = True
free_cats = False
if c_cats == None:
free_cats = True
c_points = c_points if c_points else ctypes.pointer(libvect.line_pnts())
c_cats = c_cats if c_cats else ctypes.pointer(libvect.line_cats())
feature_id, ftype, c_points, c_cats = c_read_line(feature_id, c_mapinfo,
c_points, c_cats)
if GV_TYPE[ftype]['obj'] is not None:
return GV_TYPE[ftype]['obj'](v_id=feature_id, c_mapinfo=c_mapinfo,
c_points=c_points, c_cats=c_cats,
table=table, writeable=writeable, is2D=is2D,
free_points=free_points,
free_cats=free_cats)
if __name__ == "__main__":
import doctest
from grass.pygrass import utils
utils.create_test_vector_map(test_vector_name)
doctest.testmod()
"""Remove the generated vector map, if exist"""
from grass.pygrass.utils import get_mapset_vector
from grass.script.core import run_command
mset = get_mapset_vector(test_vector_name, mapset='')
if mset:
run_command("g.remove", flags='f', type='vector', name=test_vector_name)
|