File: chull.c

package info (click to toggle)
grass 7.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 135,976 kB
  • ctags: 44,148
  • sloc: ansic: 410,300; python: 166,939; cpp: 34,819; sh: 9,358; makefile: 6,618; xml: 3,551; sql: 769; lex: 519; yacc: 450; asm: 387; perl: 282; sed: 17; objc: 7
file content (801 lines) | stat: -rw-r--r-- 21,079 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
/*
   This code is described in "Computational Geometry in C" (Second Edition),
   Chapter 4.  It is not written to be comprehensible without the 
   explanation in that book.

   Input: 3n integer coordinates for the points.
   Output: the 3D convex hull, in postscript with embedded comments
   showing the vertices and faces.

   Compile: gcc -o chull chull.c

   Written by Joseph O'Rourke, with contributions by 
   Kristy Anderson, John Kutcher, Catherine Schevon, Susan Weller.
   Last modified: March 1998
   Questions to orourke@cs.smith.edu.
   --------------------------------------------------------------------
   This code is Copyright 1998 by Joseph O'Rourke.  It may be freely 
   redistributed in its entirety provided that this copyright notice is 
   not removed.
   --------------------------------------------------------------------
 */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <grass/gis.h>
#include <grass/vector.h>
#include <grass/glocale.h>

#include "globals.h"

/*Define Boolean type */
typedef enum
{ BFALSE, BTRUE } bool;

/* Define vertex indices. */
#define X   0
#define Y   1
#define Z   2

/* Define structures for vertices, edges and faces */
typedef struct tVertexStructure tsVertex;
typedef tsVertex *tVertex;

typedef struct tEdgeStructure tsEdge;
typedef tsEdge *tEdge;

typedef struct tFaceStructure tsFace;
typedef tsFace *tFace;

struct tVertexStructure
{
    double v[3];
    int vnum;
    tEdge duplicate;		/* pointer to incident cone edge (or NULL) */
    bool onhull;		/* T iff point on hull. */
    bool mark;			/* T iff point already processed. */
    tVertex next, prev;
};

struct tEdgeStructure
{
    tFace adjface[2];
    tVertex endpts[2];
    tFace newface;		/* pointer to incident cone face. */
    bool delete;		/* T iff edge should be delete. */
    tEdge next, prev;
};

struct tFaceStructure
{
    tEdge edge[3];
    tVertex vertex[3];
    bool visible;		/* T iff face visible from new point. */
    tFace next, prev;
};

/* Define flags */
#define ONHULL   	BTRUE
#define REMOVED  	BTRUE
#define VISIBLE  	BTRUE
#define PROCESSED	BTRUE

/* Global variable definitions */
tVertex vertices = NULL;
tEdge edges = NULL;
tFace faces = NULL;

/* Function declarations */
tVertex MakeNullVertex(void);
void ReadVertices(double *px, double *py, double *pz, int num_points);
void writeVertices(struct Map_info *Map);
int DoubleTriangle(void);
void ConstructHull(void);
bool AddOne(tVertex p);
int VolumeSign(tFace f, tVertex p);
tFace MakeConeFace(tEdge e, tVertex p);
void MakeCcw(tFace f, tEdge e, tVertex p);
tEdge MakeNullEdge(void);
tFace MakeNullFace(void);
tFace MakeFace(tVertex v0, tVertex v1, tVertex v2, tFace f);
void CleanUp(void);
void CleanEdges(void);
void CleanFaces(void);
void CleanVertices(void);
bool Collinear(tVertex a, tVertex b, tVertex c);

#include "macros.h"


/*

   Release all memory allocated for edges, faces and vertices

 */
void freeMem(void)
{
    tEdge e;			/* Primary index into edge list. */
    tFace f;			/* Primary pointer into face list. */
    tVertex v;
    tEdge te;			/* Temporary edge pointer. */
    tFace tf;			/* Temporary face pointer. */
    tVertex tv;			/* Temporary vertex pointer. */

    e = edges;
    do {
	te = e;
	e = e->next;
	DELETE(edges, te);
    } while (e != edges);

    f = faces;
    do {
	tf = f;
	f = f->next;
	DELETE(faces, tf);
    } while (f != faces);

    v = vertices;
    do {
	tv = v;
	v = v->next;
	DELETE(vertices, tv);
    } while (v != vertices);

    FREE(te);
    FREE(tf);
    FREE(tv);

    DELETE(edges, e);
    DELETE(faces, f);
    DELETE(vertices, v);

    FREE(edges);
    FREE(faces);
    FREE(vertices);

}


/*-------------------------------------------------------------------*/
int make3DHull(double *px, double *py, double *pz, int num_points,
	       struct Map_info *Map)
{
    int error;

    ReadVertices(px, py, pz, num_points);

    error = DoubleTriangle();
    if (error < 0) {
	G_fatal_error
	    ("All points of 3D input map are in the same plane.\n  Cannot create a 3D hull.");
    }

    ConstructHull();

    writeVertices(Map);

    freeMem();

    return (0);
}

/*---------------------------------------------------------------------
MakeNullVertex: Makes a vertex, nulls out fields.
---------------------------------------------------------------------*/
tVertex MakeNullVertex(void)
{
    tVertex v;

    NEW(v, tsVertex);
    v->duplicate = NULL;
    v->onhull = !ONHULL;
    v->mark = !PROCESSED;
    ADD(vertices, v);

    return v;
}

/*---------------------------------------------------------------------
ReadVertices: Reads in the vertices, and links them into a circular
list with MakeNullVertex.  There is no need for the # of vertices to be
the first line: the function looks for EOF instead.  Sets the global
variable vertices via the ADD macro.
---------------------------------------------------------------------*/
void ReadVertices(double *px, double *py, double *pz, int num_points)
{
    tVertex v;
    int vnum = 0;
    int i;

    G_important_message(_("Reading 3D vertices..."));
    for (i = 0; i < num_points; i++) {
	v = MakeNullVertex();
	v->v[X] = px[i];
	v->v[Y] = py[i];
	v->v[Z] = pz[i];
	v->vnum = vnum++;
	G_percent(i, (num_points - 1), 1);
    }
    fflush(stdout);
}


/*---------------------------------------------------------------------
Outputs the 3D triangles to a GRASS 3d vector map.
---------------------------------------------------------------------*/
void writeVertices(struct Map_info *Map)
{
    /* Pointers to vertices, edges, faces. */
    tFace f;
    double *px, *py, *pz;
    double fx, fy, fz;
    double kx, ky, kz;

    long int cat, num_faces;

    struct line_pnts *Points;
    struct line_cats *Cats;


    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    px = G_malloc(sizeof(double) * 4);
    py = G_malloc(sizeof(double) * 4);
    pz = G_malloc(sizeof(double) * 4);

    f = faces;
    num_faces = 0;
    cat = 0;
    kx = 0.0;
    ky = 0.0;
    kz = 0.0;

    G_message("Writing faces and kernel to output map ...");

    do {

	num_faces++;

	/* write one triangular face */
	px[0] = ((double)(f->vertex[0]->v[X]));
	py[0] = ((double)(f->vertex[0]->v[Y]));
	pz[0] = ((double)(f->vertex[0]->v[Z]));

	px[1] = ((double)(f->vertex[1]->v[X]));
	py[1] = ((double)(f->vertex[1]->v[Y]));
	pz[1] = ((double)(f->vertex[1]->v[Z]));

	px[2] = ((double)(f->vertex[2]->v[X]));
	py[2] = ((double)(f->vertex[2]->v[Y]));
	pz[2] = ((double)(f->vertex[2]->v[Z]));

	px[3] = ((double)(f->vertex[0]->v[X]));
	py[3] = ((double)(f->vertex[0]->v[Y]));
	pz[3] = ((double)(f->vertex[0]->v[Z]));

	/* kernel position: 1st get 3D center of this face */
	fx = (px[0] + px[1] + px[2]) / 3.0;
	fy = (py[0] + py[1] + py[2]) / 3.0;
	fz = (pz[0] + pz[1] + pz[2]) / 3.0;

	/* kernel position: now add this to kernel coordinates */
	kx = kx + fx;
	ky = ky + fy;
	kz = kz + fz;

	/* write out face */
	Vect_copy_xyz_to_pnts(Points, px, py, pz, 4);
	cat++;
	Vect_cat_set(Cats, 1, cat);
	Vect_write_line(Map, GV_FACE, Points, Cats);

	f = f->next;

    } while (f != faces);

    /* write kernel for the center of the whole hull */
    kx = kx / num_faces;
    ky = ky / num_faces;
    kz = kz / num_faces;
    Vect_cat_set(Cats, 1, cat + 1);
    Vect_copy_xyz_to_pnts(Points, &kx, &ky, &kz, 1);
    Vect_write_line(Map, GV_KERNEL, Points, Cats);

    Vect_destroy_line_struct(Points);

    fflush(stdout);

    G_free(px);
    G_free(py);
    G_free(pz);

}


/*---------------------------------------------------------------------
 DoubleTriangle builds the initial double triangle.  It first finds 3 
 noncollinear points and makes two faces out of them, in opposite order.
 It then finds a fourth point that is not coplanar with that face.  The  
 vertices are stored in the face structure in counterclockwise order so 
 that the volume between the face and the point is negative. Lastly, the
 3 newfaces to the fourth point are constructed and the data structures
 are cleaned up. 
---------------------------------------------------------------------*/

/* RETURN:      0 if OK */
/*              -1 if all points collinear */
/*              -2 if all points coplanar */

int DoubleTriangle(void)
{
    tVertex v0, v1, v2, v3;
    tFace f0, f1 = NULL;
    long int vol;

    /* Find 3 noncollinear points. */
    v0 = vertices;
    while (Collinear(v0, v0->next, v0->next->next)) {
	if ((v0 = v0->next) == vertices) {
	    G_warning("DoubleTriangle:  All points are collinear!\n");
	    return (-1);
	}
    }
    v1 = v0->next;
    v2 = v1->next;

    /* Mark the vertices as processed. */
    v0->mark = PROCESSED;
    v1->mark = PROCESSED;
    v2->mark = PROCESSED;

    /* Create the two "twin" faces. */
    f0 = MakeFace(v0, v1, v2, f1);
    f1 = MakeFace(v2, v1, v0, f0);

    /* Link adjacent face fields. */
    f0->edge[0]->adjface[1] = f1;
    f0->edge[1]->adjface[1] = f1;
    f0->edge[2]->adjface[1] = f1;
    f1->edge[0]->adjface[1] = f0;
    f1->edge[1]->adjface[1] = f0;
    f1->edge[2]->adjface[1] = f0;

    /* Find a fourth, noncoplanar point to form tetrahedron. */
    v3 = v2->next;
    vol = VolumeSign(f0, v3);
    while (!vol) {
	if ((v3 = v3->next) == v0) {
	    G_warning("DoubleTriangle:  All points are coplanar!\n");
	    return (-2);
	}
	vol = VolumeSign(f0, v3);
    }

    /* Insure that v3 will be the first added. */
    vertices = v3;

    return (0);
}


/*---------------------------------------------------------------------
ConstructHull adds the vertices to the hull one at a time.  The hull
vertices are those in the list marked as onhull.
---------------------------------------------------------------------*/
void ConstructHull(void)
{
    tVertex v, vnext;
    bool changed;		/* T if addition changes hull; not used. */
    int i;
    int numVertices;


    G_important_message(_("Constructing 3D hull..."));

    v = vertices;
    i = 0;
    do {
	vnext = v->next;
	v = vnext;
	i++;
    } while (v != vertices);
    numVertices = i;

    v = vertices;
    i = 0;
    do {
	vnext = v->next;
	if (!v->mark) {
	    v->mark = PROCESSED;
	    changed = AddOne(v);
	    CleanUp();
	}
	v = vnext;
	i++;

	G_percent(i, numVertices, 1);

    } while (v != vertices);

    fflush(stdout);

}

/*---------------------------------------------------------------------
AddOne is passed a vertex.  It first determines all faces visible from 
that point.  If none are visible then the point is marked as not 
onhull.  Next is a loop over edges.  If both faces adjacent to an edge
are visible, then the edge is marked for deletion.  If just one of the
adjacent faces is visible then a new face is constructed.
---------------------------------------------------------------------*/
bool AddOne(tVertex p)
{
    tFace f;
    tEdge e, temp;
    long int vol;
    bool vis = BFALSE;


    /* Mark faces visible from p. */
    f = faces;
    do {
	vol = VolumeSign(f, p);

	if (vol < 0) {
	    f->visible = VISIBLE;
	    vis = BTRUE;
	}
	f = f->next;
    } while (f != faces);

    /* If no faces are visible from p, then p is inside the hull. */
    if (!vis) {
	p->onhull = !ONHULL;
	return BFALSE;
    }

    /* Mark edges in interior of visible region for deletion.
       Erect a newface based on each border edge. */
    e = edges;
    do {
	temp = e->next;
	if (e->adjface[0]->visible && e->adjface[1]->visible)
	    /* e interior: mark for deletion. */
	    e->delete = REMOVED;
	else if (e->adjface[0]->visible || e->adjface[1]->visible)
	    /* e border: make a new face. */
	    e->newface = MakeConeFace(e, p);
	e = temp;
    } while (e != edges);
    return BTRUE;
}

/*---------------------------------------------------------------------
VolumeSign returns the sign of the volume of the tetrahedron determined by f
and p.  VolumeSign is +1 iff p is on the negative side of f,
where the positive side is determined by the rh-rule.  So the volume 
is positive if the ccw normal to f points outside the tetrahedron.
The final fewer-multiplications form is due to Bob Williamson.
---------------------------------------------------------------------*/
int VolumeSign(tFace f, tVertex p)
{
    double vol;
    double ax, ay, az, bx, by, bz, cx, cy, cz;

    ax = f->vertex[0]->v[X] - p->v[X];
    ay = f->vertex[0]->v[Y] - p->v[Y];
    az = f->vertex[0]->v[Z] - p->v[Z];
    bx = f->vertex[1]->v[X] - p->v[X];
    by = f->vertex[1]->v[Y] - p->v[Y];
    bz = f->vertex[1]->v[Z] - p->v[Z];
    cx = f->vertex[2]->v[X] - p->v[X];
    cy = f->vertex[2]->v[Y] - p->v[Y];
    cz = f->vertex[2]->v[Z] - p->v[Z];

    vol = ax * (by * cz - bz * cy)
	+ ay * (bz * cx - bx * cz)
	+ az * (bx * cy - by * cx);

    /* The volume should be an integer. */
    if (vol > 0.0)
	return 1;
    else if (vol < -0.0)
	return -1;
    else
	return 0;
}


/*---------------------------------------------------------------------
MakeConeFace makes a new face and two new edges between the 
edge and the point that are passed to it. It returns a pointer to
the new face.
---------------------------------------------------------------------*/
tFace MakeConeFace(tEdge e, tVertex p)
{
    tEdge new_edge[2];
    tFace new_face;
    int i, j;

    /* Make two new edges (if don't already exist). */
    for (i = 0; i < 2; ++i)
	/* If the edge exists, copy it into new_edge. */
	if (!(new_edge[i] = e->endpts[i]->duplicate)) {
	    /* Otherwise (duplicate is NULL), MakeNullEdge. */
	    new_edge[i] = MakeNullEdge();
	    new_edge[i]->endpts[0] = e->endpts[i];
	    new_edge[i]->endpts[1] = p;
	    e->endpts[i]->duplicate = new_edge[i];
	}

    /* Make the new face. */
    new_face = MakeNullFace();
    new_face->edge[0] = e;
    new_face->edge[1] = new_edge[0];
    new_face->edge[2] = new_edge[1];
    MakeCcw(new_face, e, p);

    /* Set the adjacent face pointers. */
    for (i = 0; i < 2; ++i)
	for (j = 0; j < 2; ++j)
	    /* Only one NULL link should be set to new_face. */
	    if (!new_edge[i]->adjface[j]) {
		new_edge[i]->adjface[j] = new_face;
		break;
	    }

    return new_face;
}

/*---------------------------------------------------------------------
MakeCcw puts the vertices in the face structure in counterclock wise 
order.  We want to store the vertices in the same 
order as in the visible face.  The third vertex is always p.
---------------------------------------------------------------------*/
void MakeCcw(tFace f, tEdge e, tVertex p)
{
    tFace fv;			/* The visible face adjacent to e */
    int i;			/* Index of e->endpoint[0] in fv. */
    tEdge s;			/* Temporary, for swapping */

    if (e->adjface[0]->visible)
	fv = e->adjface[0];
    else
	fv = e->adjface[1];

    /* Set vertex[0] & [1] of f to have the same orientation
       as do the corresponding vertices of fv. */
    for (i = 0; fv->vertex[i] != e->endpts[0]; ++i) ;
    /* Orient f the same as fv. */
    if (fv->vertex[(i + 1) % 3] != e->endpts[1]) {
	f->vertex[0] = e->endpts[1];
	f->vertex[1] = e->endpts[0];
    }
    else {
	f->vertex[0] = e->endpts[0];
	f->vertex[1] = e->endpts[1];
	SWAP(s, f->edge[1], f->edge[2]);
    }
    /* This swap is tricky. e is edge[0]. edge[1] is based on endpt[0],
       edge[2] on endpt[1].  So if e is oriented "forwards," we
       need to move edge[1] to follow [0], because it precedes. */

    f->vertex[2] = p;
}

/*---------------------------------------------------------------------
MakeNullEdge creates a new cell and initializes all pointers to NULL
and sets all flags to off.  It returns a pointer to the empty cell.
---------------------------------------------------------------------*/
tEdge MakeNullEdge(void)
{
    tEdge e;

    NEW(e, tsEdge);
    e->adjface[0] = e->adjface[1] = e->newface = NULL;
    e->endpts[0] = e->endpts[1] = NULL;
    e->delete = !REMOVED;
    ADD(edges, e);
    return e;
}

/*--------------------------------------------------------------------
MakeNullFace creates a new face structure and initializes all of its
flags to NULL and sets all the flags to off.  It returns a pointer
to the empty cell.
---------------------------------------------------------------------*/
tFace MakeNullFace(void)
{
    tFace f;
    int i;

    NEW(f, tsFace);
    for (i = 0; i < 3; ++i) {
	f->edge[i] = NULL;
	f->vertex[i] = NULL;
    }
    f->visible = !VISIBLE;
    ADD(faces, f);
    return f;
}

/*---------------------------------------------------------------------
MakeFace creates a new face structure from three vertices (in ccw
order).  It returns a pointer to the face.
---------------------------------------------------------------------*/
tFace MakeFace(tVertex v0, tVertex v1, tVertex v2, tFace fold)
{
    tFace f;
    tEdge e0, e1, e2;

    /* Create edges of the initial triangle. */
    if (!fold) {
	e0 = MakeNullEdge();
	e1 = MakeNullEdge();
	e2 = MakeNullEdge();
    }
    else {			/* Copy from fold, in reverse order. */
	e0 = fold->edge[2];
	e1 = fold->edge[1];
	e2 = fold->edge[0];
    }
    e0->endpts[0] = v0;
    e0->endpts[1] = v1;
    e1->endpts[0] = v1;
    e1->endpts[1] = v2;
    e2->endpts[0] = v2;
    e2->endpts[1] = v0;

    /* Create face for triangle. */
    f = MakeNullFace();
    f->edge[0] = e0;
    f->edge[1] = e1;
    f->edge[2] = e2;
    f->vertex[0] = v0;
    f->vertex[1] = v1;
    f->vertex[2] = v2;

    /* Link edges to face. */
    e0->adjface[0] = e1->adjface[0] = e2->adjface[0] = f;

    return f;
}

/*---------------------------------------------------------------------
CleanUp goes through each data structure list and clears all
flags and NULLs out some pointers.  The order of processing
(edges, faces, vertices) is important.
---------------------------------------------------------------------*/
void CleanUp(void)
{
    CleanEdges();
    CleanFaces();
    CleanVertices();
}

/*---------------------------------------------------------------------
CleanEdges runs through the edge list and cleans up the structure.
If there is a newface then it will put that face in place of the 
visible face and NULL out newface. It also deletes so marked edges.
---------------------------------------------------------------------*/
void CleanEdges(void)
{
    tEdge e;			/* Primary index into edge list. */
    tEdge t;			/* Temporary edge pointer. */

    /* Integrate the newface's into the data structure. */
    /* Check every edge. */
    e = edges;
    do {
	if (e->newface) {
	    if (e->adjface[0]->visible)
		e->adjface[0] = e->newface;
	    else
		e->adjface[1] = e->newface;
	    e->newface = NULL;
	}
	e = e->next;
    } while (e != edges);

    /* Delete any edges marked for deletion. */
    while (edges && edges->delete) {
	e = edges;
	DELETE(edges, e);
    }
    e = edges->next;
    do {
	if (e->delete) {
	    t = e;
	    e = e->next;
	    DELETE(edges, t);
	}
	else
	    e = e->next;
    } while (e != edges);
}

/*---------------------------------------------------------------------
CleanFaces runs through the face list and deletes any face marked visible.
---------------------------------------------------------------------*/
void CleanFaces(void)
{
    tFace f;			/* Primary pointer into face list. */
    tFace t;			/* Temporary pointer, for deleting. */


    while (faces && faces->visible) {
	f = faces;
	DELETE(faces, f);
    }
    f = faces->next;
    do {
	if (f->visible) {
	    t = f;
	    f = f->next;
	    DELETE(faces, t);
	}
	else
	    f = f->next;
    } while (f != faces);
}

/*---------------------------------------------------------------------
CleanVertices runs through the vertex list and deletes the 
vertices that are marked as processed but are not incident to any 
undeleted edges. 
---------------------------------------------------------------------*/
void CleanVertices(void)
{
    tEdge e;
    tVertex v, t;

    /* Mark all vertices incident to some undeleted edge as on the hull. */
    e = edges;
    do {
	e->endpts[0]->onhull = e->endpts[1]->onhull = ONHULL;
	e = e->next;
    } while (e != edges);

    /* Delete all vertices that have been processed but
       are not on the hull. */
    while (vertices && vertices->mark && !vertices->onhull) {
	v = vertices;
	DELETE(vertices, v);
    }
    v = vertices->next;
    do {
	if (v->mark && !v->onhull) {
	    t = v;
	    v = v->next;
	    DELETE(vertices, t)
	}
	else
	    v = v->next;
    } while (v != vertices);

    /* Reset flags. */
    v = vertices;
    do {
	v->duplicate = NULL;
	v->onhull = !ONHULL;
	v = v->next;
    } while (v != vertices);
}

/*---------------------------------------------------------------------
Collinear checks to see if the three points given are collinear,
by checking to see if each element of the cross product is zero.
---------------------------------------------------------------------*/
bool Collinear(tVertex a, tVertex b, tVertex c)
{
    return
	(c->v[Z] - a->v[Z]) * (b->v[Y] - a->v[Y]) -
	(b->v[Z] - a->v[Z]) * (c->v[Y] - a->v[Y]) == 0
	&& (b->v[Z] - a->v[Z]) * (c->v[X] - a->v[X]) -
	(b->v[X] - a->v[X]) * (c->v[Z] - a->v[Z]) == 0
	&& (b->v[X] - a->v[X]) * (c->v[Y] - a->v[Y]) -
	(b->v[Y] - a->v[Y]) * (c->v[X] - a->v[X]) == 0;
}