File: m.distance.py

package info (click to toggle)
grass 8.4.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 277,040 kB
  • sloc: ansic: 460,798; python: 227,732; cpp: 42,026; sh: 11,262; makefile: 7,007; xml: 3,637; sql: 968; lex: 520; javascript: 484; yacc: 450; asm: 387; perl: 157; sed: 25; objc: 6; ruby: 4
file content (152 lines) | stat: -rwxr-xr-x 4,732 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/env python3
############################################################################
#
# MODULE:       m.distance
#
# AUTHOR(S):    Hamish Bowman, Dunedin, New Zealand
#               Updated for Ctypes by Martin Landa <landa.martin gmail.com>
#
# PURPOSE:      Find distance between two points
#               If the projection is latitude-longitude, this distance
#                 is measured along the geodesic.
#               Demonstrates GRASS Python Ctypes interface
#
# COPYRIGHT:    (c) 2008-2011 Hamish Bowman, and the GRASS Development Team
#
#               This program is free software under the GNU General
#               Public License (>=v2). Read the file COPYING that
#               comes with GRASS for details.
#
############################################################################
#
# Requires GRASS Python Ctypes interface
# Requires Numeric module (NumPy) from  http://numpy.scipy.org/
#

# %module
# % label: Finds the distance between two or more points.
# % description: If the projection is latitude-longitude, this distance is measured along the geodesic.
# % keyword: miscellaneous
# % keyword: distance
# % keyword: measure
# %end
# %option
# % key: coord
# % type: string
# % required: yes
# % multiple: yes
# % key_desc: easting,northing
# % description: Comma separated list of coordinate pairs
# %end
# %flag
# % key: i
# % description: Read coordinate pairs from stdin
# % suppress_required: yes
# %end

import sys

import grass.script as gs

from grass.lib.gis import *


def main():
    G_gisinit("m.distance")

    # calc distance

    proj_type = G_begin_distance_calculations()
    # returns 0 if projection has no metrix (ie. imagery)
    # returns 1 if projection is planimetric
    # returns 2 if projection is latitude-longitude

    # parser always creates at least an empty variable, and sys.argv is
    # toast, so no way to check if option was given. So it hangs if
    # --q was the only option given and there is no data from stdin.
    coords = []
    if flags["i"]:
        # read line by line from stdin
        while True:
            line = sys.stdin.readline().strip()
            if not line:  # EOF
                break
            else:
                coords.append(line.split(","))
    else:
        # read from coord= command line option
        p = None
        for c in options["coord"].split(","):
            if not p:
                p = [c]
            else:
                p.append(c)
                coords.append(p)
                p = None

    if len(coords) < 2:
        gs.fatal("A minimum of two input coordinate pairs are needed")

    # init variables
    overall_distance = 0.0
    coord_array = c_double * len(coords)
    x = coord_array()
    y = coord_array()
    if proj_type == 2:
        # lat/lon scan for DDD:MM:SS.SSSS
        easting = c_double()
        northing = c_double()
        G_scan_easting(coords[0][0], byref(easting), PROJECTION_LL)
        G_scan_northing(coords[0][1], byref(northing), PROJECTION_LL)
        x[0] = float(easting.value)
        y[0] = float(northing.value)
    else:
        # plain coordinates
        x[0] = float(coords[0][0])
        y[0] = float(coords[0][1])

    for i in range(1, len(coords)):
        if proj_type == 2:
            easting = c_double()
            northing = c_double()
            G_scan_easting(coords[i][0], byref(easting), PROJECTION_LL)
            G_scan_northing(coords[i][1], byref(northing), PROJECTION_LL)
            x[i] = float(easting.value)
            y[i] = float(northing.value)
        else:
            x[i] = float(coords[i][0])
            y[i] = float(coords[i][1])

        segment_distance = G_distance(x[i - 1], y[i - 1], x[i], y[i])
        overall_distance += segment_distance

        print("segment %d distance is %.2f meters" % (i, segment_distance))

        # add to the area array

    print("\ntotal distance is %.2f meters\n" % overall_distance)

    # calc area
    if len(coords) < 3:
        return 0

    G_begin_polygon_area_calculations()
    # returns 0 if the projection is not measurable (ie. imagery or xy)
    # returns 1 if the projection is planimetric (ie. UTM or SP)
    # returns 2 if the projection is non-planimetric (ie. latitude-longitude)

    # do not need to close polygon (but it doesn't hurt if you do)
    area = G_area_of_polygon(x, y, len(coords))
    print("area is %.2f square meters\n" % area)

    # we don't need this, but just to have a look
    if proj_type == 1:
        G_database_units_to_meters_factor()
        gs.message("Location units are %s" % G_database_unit_name(True).lower())

    return 0


if __name__ == "__main__":
    options, flags = gs.parser()
    sys.exit(main())