File: regtree.c

package info (click to toggle)
grass 8.4.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 277,040 kB
  • sloc: ansic: 460,798; python: 227,732; cpp: 42,026; sh: 11,262; makefile: 7,007; xml: 3,637; sql: 968; lex: 520; javascript: 484; yacc: 450; asm: 387; perl: 157; sed: 25; objc: 6; ruby: 4
file content (585 lines) | stat: -rw-r--r-- 16,419 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
/*!
 * \file rbtree.c
 *
 * \brief binary search tree
 *
 * Generic balanced binary search tree (Red Black Tree) implementation
 *
 * (C) 2009 by the GRASS Development Team
 *
 * This program is free software under the GNU General Public License
 * (>=v2).  Read the file COPYING that comes with GRASS for details.
 *
 * \author Original author Julienne Walker 2003, 2008
 *         GRASS implementation Markus Metz, 2009
 */

/* balanced binary search tree implementation
 *
 * this one is a Red Black Tree, no parent pointers, no threads
 * The core code comes from Julienne Walker's tutorials on binary search trees
 * original license: public domain
 * http://eternallyconfuzzled.com/tuts/datastructures/jsw_tut_rbtree.aspx
 * some ideas come from libavl (GPL >= 2)
 *
 * Red Black Trees are used to maintain a data structure with
 * search, insertion and deletion in O(log N) time
 */

#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <grass/gis.h>
#include <grass/glocale.h>
#include "regtree.h"

/* internal functions */
static struct RG_NODE *rgtree_single(struct RG_NODE *, int);
static struct RG_NODE *rgtree_double(struct RG_NODE *, int);
static struct reg_stats *rgtree_first(struct RG_TRAV *);
static struct reg_stats *rgtree_next(struct RG_TRAV *);
static struct RG_NODE *rgtree_make_node(size_t, struct reg_stats *);
static int is_red(struct RG_NODE *);

int compare_regstat(struct reg_stats *a, struct reg_stats *b)
{
    return (a->id - b->id);
}

/* create new tree and initialize
 * returns pointer to new tree, NULL for memory allocation error
 */
struct RG_TREE *rgtree_create(int nbands, size_t rb_datasize)
{
    struct RG_TREE *tree = (struct RG_TREE *)malloc(sizeof(struct RG_TREE));

    if (tree == NULL) {
        G_warning("RB tree: Out of memory!");
        return NULL;
    }

    tree->datasize = rb_datasize;
    tree->cmp = compare_regstat;
    tree->count = 0;
    tree->nbands = nbands;
    tree->root = NULL;

    return tree;
}

/* add an item to a tree
 * non-recursive top-down insertion
 * the algorithm does not allow duplicates and also does not warn about a
 * duplicate returns 1 on success, 0 on failure
 */
int rgtree_insert(struct RG_TREE *tree, struct reg_stats *data)
{
    assert(tree && data);
    assert(data->id > 0);

    if (tree->root == NULL) {
        /* create a new root node for tree */
        tree->root = rgtree_make_node(tree->datasize, data);
        if (tree->root == NULL)
            return 0;
    }
    else {
        struct RG_NODE head = {0, {0, 0}, {0, 0, 0, 0}}; /* False tree root */
        struct RG_NODE *g, *t; /* Grandparent & parent */
        struct RG_NODE *p, *q; /* Iterator & parent */
        int dir = 0, last = 0;

        /* Set up helpers */
        t = &head;
        g = p = NULL;
        q = t->link[1] = tree->root;

        /* Search down the tree */
        for (;;) {
            if (q == NULL) {
                /* Insert new node at the bottom */
                p->link[dir] = q = rgtree_make_node(tree->datasize, data);
                if (q == NULL)
                    return 0;
            }
            else if (is_red(q->link[0]) && is_red(q->link[1])) {
                /* Color flip */
                q->red = 1;
                q->link[0]->red = 0;
                q->link[1]->red = 0;
            }

            /* Fix red violation */
            if (is_red(q) && is_red(p)) {
                int dir2 = t->link[1] == g;

                if (q == p->link[last])
                    t->link[dir2] = rgtree_single(g, !last);
                else
                    t->link[dir2] = rgtree_double(g, !last);
            }

            last = dir;
            dir = tree->cmp(&(q->data), data);

            /* Stop if found. This check also disallows duplicates in the tree
             */
            if (dir == 0)
                break;

            dir = dir < 0;

            /* Move the helpers down */
            if (g != NULL)
                t = g;

            g = p, p = q;
            q = q->link[dir];
        }

        /* Update root */
        tree->root = head.link[1];
    }

    /* Make root black */
    tree->root->red = 0;

    tree->count++;

    return 1;
}

/* remove an item from a tree that matches given data
 * non-recursive top-down removal
 * returns 1 on successful removal
 * returns 0 if data item was not found
 */
int rgtree_remove(struct RG_TREE *tree, struct reg_stats *data)
{
    struct RG_NODE head = {0, {0, 0}, {0, 0, 0, 0}}; /* False tree root */
    struct RG_NODE *q, *p, *g;                       /* Helpers */
    struct RG_NODE *f = NULL;                        /* Found item */
    int dir = 1, removed = 0;

    assert(tree && data);

    if (tree->root == NULL) {
        return 0; /* empty tree, nothing to remove */
    }

    /* Set up helpers */
    q = &head;
    g = p = NULL;
    q->link[1] = tree->root;

    /* Search and push a red down */
    while (q->link[dir] != NULL) {
        int last = dir;

        /* Update helpers */
        g = p, p = q;
        q = q->link[dir];
        dir = tree->cmp(&(q->data), data);

        /* Save found node */
        if (dir == 0)
            f = q;

        dir = dir < 0;

        /* Push the red node down */
        if (!is_red(q) && !is_red(q->link[dir])) {
            if (is_red(q->link[!dir]))
                p = p->link[last] = rgtree_single(q, dir);
            else if (!is_red(q->link[!dir])) {
                struct RG_NODE *s = p->link[!last];

                if (s != NULL) {
                    if (!is_red(s->link[!last]) && !is_red(s->link[last])) {
                        /* Color flip */
                        p->red = 0;
                        s->red = 1;
                        q->red = 1;
                    }
                    else {
                        int dir2 = g->link[1] == p;

                        if (is_red(s->link[last]))
                            g->link[dir2] = rgtree_double(p, last);
                        else if (is_red(s->link[!last]))
                            g->link[dir2] = rgtree_single(p, last);

                        /* Ensure correct coloring */
                        q->red = g->link[dir2]->red = 1;
                        g->link[dir2]->link[0]->red = 0;
                        g->link[dir2]->link[1]->red = 0;
                    }
                }
            }
        }
    }

    /* Replace and remove if found */
    if (f != NULL) {
        if (f != q) {
            f->data.id = q->data.id;
            f->data.count = q->data.count;
            memcpy(f->data.sum, q->data.sum, tree->datasize);
            memcpy(f->data.mean, q->data.mean, tree->datasize);
            /* unused:
               memcpy(f->data.min, q->data.min, tree->datasize);
               memcpy(f->data.max, q->data.max, tree->datasize);
             */
        }
        p->link[p->link[1] == q] = q->link[q->link[0] == NULL];

        free(q->data.sum);
        free(q->data.mean);
        /* unused:
           free(q->data.min);
           free(q->data.max);
         */
        free(q);
        q = NULL;
        tree->count--;
        removed = 1;
    }
    else
        G_debug(2, "RB tree: data not found in search tree");

    /* Update root and make it black */
    tree->root = head.link[1];
    if (tree->root != NULL)
        tree->root->red = 0;

    return removed;
}

/* find data item in tree
 * returns pointer to data item if found else NULL
 */
struct reg_stats *rgtree_find(struct RG_TREE *tree, struct reg_stats *data)
{
    struct RG_NODE *curr_node = tree->root;
    int cmp;

    assert(tree && data);

    while (curr_node != NULL) {
        cmp = tree->cmp(&(curr_node->data), data);
        if (cmp == 0)
            return &curr_node->data; /* found */

        curr_node = curr_node->link[cmp < 0];
    }
    return NULL;
}

/* initialize tree traversal
 * (re-)sets trav structure
 * returns 0
 */
int rgtree_init_trav(struct RG_TRAV *trav, struct RG_TREE *tree)
{
    assert(trav && tree);

    trav->tree = tree;
    trav->curr_node = tree->root;
    trav->first = 1;
    trav->top = 0;

    return 0;
}

/* traverse the tree in ascending order
 * useful to get all items in the tree non-recursively
 * struct RG_TRAV *trav needs to be initialized first
 * returns pointer to data, NULL when finished
 */
struct reg_stats *rgtree_traverse(struct RG_TRAV *trav)
{
    assert(trav);

    if (trav->curr_node == NULL) {
        if (trav->first)
            G_debug(1, "RB tree: empty tree");
        else
            G_debug(1, "RB tree: finished traversing");

        return NULL;
    }

    if (!trav->first)
        return rgtree_next(trav);
    else {
        trav->first = 0;
        return rgtree_first(trav);
    }
}

/* find start point to traverse the tree in ascending order
 * useful to get a selection of items in the tree
 * magnitudes faster than traversing the whole tree
 * may return first item that's smaller or first item that's larger
 * struct RG_TRAV *trav needs to be initialized first
 * returns pointer to data, NULL when finished
 */
struct reg_stats *rgtree_traverse_start(struct RG_TRAV *trav,
                                        struct reg_stats *data)
{
    int dir = 0;

    assert(trav && data);

    if (trav->curr_node == NULL) {
        if (trav->first)
            G_warning("RB tree: empty tree");
        else
            G_warning("RB tree: finished traversing");

        return NULL;
    }

    if (!trav->first)
        return rgtree_next(trav);

    /* else first time, get start node */

    trav->first = 0;
    trav->top = 0;

    while (trav->curr_node != NULL) {
        dir = trav->tree->cmp(&(trav->curr_node->data), data);
        /* exact match, great! */
        if (dir == 0)
            return &(trav->curr_node->data);
        else {
            dir = dir < 0;
            /* end of branch, also reached if
             * smallest item is larger than search template or
             * largest item is smaller than search template */
            if (trav->curr_node->link[dir] == NULL)
                return &(trav->curr_node->data);

            trav->up[trav->top++] = trav->curr_node;
            trav->curr_node = trav->curr_node->link[dir];
        }
    }

    return NULL; /* should not happen */
}

/* two functions needed to fully traverse the tree: initialize and continue
 * useful to get all items in the tree non-recursively
 * this one here uses a stack
 * parent pointers or threads would also be possible
 * but these would need to be added to RG_NODE
 * -> more memory needed for standard operations
 */

/* start traversing the tree
 * returns pointer to smallest data item
 */
static struct reg_stats *rgtree_first(struct RG_TRAV *trav)
{
    /* get smallest item */
    while (trav->curr_node->link[0] != NULL) {
        trav->up[trav->top++] = trav->curr_node;
        trav->curr_node = trav->curr_node->link[0];
    }

    return &(trav->curr_node->data); /* return smallest item */
}

/* continue traversing the tree in ascending order
 * returns pointer to data item, NULL when finished
 */
static struct reg_stats *rgtree_next(struct RG_TRAV *trav)
{
    if (trav->curr_node->link[1] != NULL) {
        /* something on the right side: larger item */
        trav->up[trav->top++] = trav->curr_node;
        trav->curr_node = trav->curr_node->link[1];

        /* go down, find smallest item in this branch */
        while (trav->curr_node->link[0] != NULL) {
            trav->up[trav->top++] = trav->curr_node;
            trav->curr_node = trav->curr_node->link[0];
        }
    }
    else {
        /* at smallest item in this branch, go back up */
        struct RG_NODE *last;

        do {
            if (trav->top == 0) {
                trav->curr_node = NULL;
                break;
            }
            last = trav->curr_node;
            trav->curr_node = trav->up[--trav->top];
        } while (last == trav->curr_node->link[1]);
    }

    if (trav->curr_node != NULL) {
        return &(trav->curr_node->data);
    }
    else
        return NULL; /* finished traversing */
}

/* destroy the tree */
void rgtree_destroy(struct RG_TREE *tree)
{
    struct RG_NODE *it;
    struct RG_NODE *save = tree->root;

    /*
       Rotate away the left links so that
       we can treat this like the destruction
       of a linked list
     */
    while ((it = save) != NULL) {
        if (it->link[0] == NULL) {
            /* No left links, just kill the node and move on */
            save = it->link[1];
            free(it->data.sum);
            free(it->data.mean);
            free(it);
            it = NULL;
        }
        else {
            /* Rotate away the left link and check again */
            save = it->link[0];
            it->link[0] = save->link[1];
            save->link[1] = it;
        }
    }
    free(tree);
    tree = NULL;

    return;
}

/* used for debugging: check for errors in tree structure */
int rgtree_debug(struct RG_TREE *tree, struct RG_NODE *root)
{
    int lh, rh;

    if (root == NULL)
        return 1;
    else {
        struct RG_NODE *ln = root->link[0];
        struct RG_NODE *rn = root->link[1];
        int lcmp = 0, rcmp = 0;

        /* Consecutive red links */
        if (is_red(root)) {
            if (is_red(ln) || is_red(rn)) {
                G_warning("Red Black Tree debugging: Red violation");
                return 0;
            }
        }

        lh = rgtree_debug(tree, ln);
        rh = rgtree_debug(tree, rn);

        if (ln) {
            lcmp = tree->cmp(&(ln->data), &(root->data));
        }

        if (rn) {
            rcmp = tree->cmp(&(rn->data), &(root->data));
        }

        /* Invalid binary search tree:
         * left node >= parent or right node <= parent */
        if ((ln != NULL && lcmp > -1) || (rn != NULL && rcmp < 1)) {
            G_warning("Red Black Tree debugging: Binary tree violation");
            return 0;
        }

        /* Black height mismatch */
        if (lh != 0 && rh != 0 && lh != rh) {
            G_warning("Red Black Tree debugging: Black violation");
            return 0;
        }

        /* Only count black links */
        if (lh != 0 && rh != 0)
            return is_red(root) ? lh : lh + 1;
        else
            return 0;
    }
}

/*******************************************************
 *                                                     *
 *  internal functions for Red Black Tree maintenance  *
 *                                                     *
 *******************************************************/

/* add a new node to the tree */
static struct RG_NODE *rgtree_make_node(size_t datasize, struct reg_stats *data)
{
    struct RG_NODE *new_node = (struct RG_NODE *)malloc(sizeof(*new_node));

    if (new_node == NULL)
        G_fatal_error("RB Search Tree: Out of memory!");

    if ((new_node->data.sum = malloc(datasize)) == NULL)
        G_fatal_error("RB Search Tree: Out of memory!");
    if ((new_node->data.mean = malloc(datasize)) == NULL)
        G_fatal_error("RB Search Tree: Out of memory!");
    /* unused:
       if ((new_node->data.min = malloc(datasize)) == NULL)
       G_fatal_error("RB Search Tree: Out of memory!");
       if ((new_node->data.max = malloc(datasize)) == NULL)
       G_fatal_error("RB Search Tree: Out of memory!");
     */

    new_node->data.id = data->id;
    new_node->data.count = data->count;
    memcpy(new_node->data.sum, data->sum, datasize);
    memcpy(new_node->data.mean, data->mean, datasize);
    /* unused
       memcpy(new_node->data.min, data->min, datasize);
       memcpy(new_node->data.max, data->max, datasize);
     */

    new_node->red = 1; /* 1 is red, 0 is black */
    new_node->link[0] = NULL;
    new_node->link[1] = NULL;

    return new_node;
}

/* check for red violation */
static int is_red(struct RG_NODE *root)
{
    if (root)
        return root->red == 1;

    return 0;
}

/* single rotation */
static struct RG_NODE *rgtree_single(struct RG_NODE *root, int dir)
{
    struct RG_NODE *newroot = root->link[!dir];

    root->link[!dir] = newroot->link[dir];
    newroot->link[dir] = root;

    root->red = 1;
    newroot->red = 0;

    return newroot;
}

/* double rotation */
static struct RG_NODE *rgtree_double(struct RG_NODE *root, int dir)
{
    root->link[!dir] = rgtree_single(root->link[!dir], !dir);
    return rgtree_single(root, dir);
}