1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
/* functions to classify sorted arrays of doubles and fill a vector of
* classbreaks */
#include <grass/glocale.h>
#include <grass/arraystats.h>
int AS_option_to_algorithm(const struct Option *option)
{
if (G_strcasecmp(option->answer, "int") == 0)
return CLASS_INTERVAL;
if (G_strcasecmp(option->answer, "std") == 0)
return CLASS_STDEV;
if (G_strcasecmp(option->answer, "qua") == 0)
return CLASS_QUANT;
if (G_strcasecmp(option->answer, "equ") == 0)
return CLASS_EQUIPROB;
if (G_strcasecmp(option->answer, "dis") == 0)
return CLASS_DISCONT;
G_fatal_error(_("Unknown algorithm '%s'"), option->answer);
}
double AS_class_apply_algorithm(int algo, double *data, int nrec, int *nbreaks,
double *classbreaks)
{
double finfo = 0.0;
switch (algo) {
case CLASS_INTERVAL:
finfo = AS_class_interval(data, nrec, *nbreaks, classbreaks);
break;
case CLASS_STDEV:
finfo = AS_class_stdev(data, nrec, *nbreaks, classbreaks);
break;
case CLASS_QUANT:
finfo = AS_class_quant(data, nrec, *nbreaks, classbreaks);
break;
case CLASS_EQUIPROB:
finfo = AS_class_equiprob(data, nrec, nbreaks, classbreaks);
break;
case CLASS_DISCONT:
/* finfo = class_discont(data, nrec, *nbreaks, classbreaks);
* disabled because of bugs */
G_fatal_error(
_("Discont algorithm currently not available because of bugs"));
break;
default:
break;
}
if (finfo == 0)
G_fatal_error(_("Classification algorithm failed"));
return finfo;
}
int AS_class_interval(double *data, int count, int nbreaks, double *classbreaks)
{
double min, max;
double step;
int i = 0;
min = data[0];
max = data[count - 1];
step = (max - min) / (nbreaks + 1);
for (i = 0; i < nbreaks; i++)
classbreaks[i] = min + (step * (i + 1));
return (1);
}
double AS_class_stdev(double *data, int count, int nbreaks, double *classbreaks)
{
struct GASTATS stats;
int i;
int nbclass;
double scale = 1.0;
AS_basic_stats(data, count, &stats);
nbclass = nbreaks + 1;
if (nbclass % 2 ==
1) { /* number of classes is uneven so we center middle class on mean */
/* find appropriate fraction of stdev for step */
i = 1;
while (i) {
if (((stats.mean + stats.stdev * scale / 2) +
(stats.stdev * scale * (nbclass / 2 - 1)) >
stats.max) ||
((stats.mean - stats.stdev * scale / 2) -
(stats.stdev * scale * (nbclass / 2 - 1)) <
stats.min))
scale = scale / 2;
else
i = 0;
}
/* classbreaks below the mean */
for (i = 0; i < nbreaks / 2; i++)
classbreaks[i] = (stats.mean - stats.stdev * scale / 2) -
stats.stdev * scale * (nbreaks / 2 - (i + 1));
/* classbreaks above the mean */
for (; i < nbreaks; i++)
classbreaks[i] = (stats.mean + stats.stdev * scale / 2) +
stats.stdev * scale * (i - nbreaks / 2);
}
else { /* number of classes is even so mean is a classbreak */
/* decide whether to use 1*stdev or 0.5*stdev as step */
i = 1;
while (i) {
if (((stats.mean) + (stats.stdev * scale * (nbclass / 2 - 1)) >
stats.max) ||
((stats.mean) - (stats.stdev * scale * (nbclass / 2 - 1)) <
stats.min))
scale = scale / 2;
else
i = 0;
}
/* classbreaks below the mean and on the mean */
for (i = 0; i <= nbreaks / 2; i++)
classbreaks[i] =
stats.mean - stats.stdev * scale * (nbreaks / 2 - i);
/* classbreaks above the mean */
for (; i < nbreaks; i++)
classbreaks[i] =
stats.mean + stats.stdev * scale * (i - nbreaks / 2);
}
return (scale);
}
int AS_class_quant(double *data, int count, int nbreaks, double *classbreaks)
{
int i, step;
step = count / (nbreaks + 1);
for (i = 0; i < nbreaks; i++)
classbreaks[i] = data[step * (i + 1)];
return (1);
}
int AS_class_equiprob(double *data, int count, int *nbreaks,
double *classbreaks)
{
int i, j;
double *lequi; /*Vector of scale factors for probabilities of the normal
distribution */
struct GASTATS stats;
int nbclass;
nbclass = *nbreaks + 1;
lequi = G_malloc(*nbreaks * sizeof(double));
/* The following values come from the normal distribution and will be used
* as: classbreak[i] = (lequi[i] * stdev) + mean;
*/
if (nbclass < 3) {
lequi[0] = 0;
}
else if (nbclass == 3) {
lequi[0] = -0.43076;
lequi[1] = 0.43076;
}
else if (nbclass == 4) {
lequi[0] = -0.6745;
lequi[1] = 0;
lequi[2] = 0.6745;
}
else if (nbclass == 5) {
lequi[0] = -0.8416;
lequi[1] = -0.2533;
lequi[2] = 0.2533;
lequi[3] = 0.8416;
}
else if (nbclass == 6) {
lequi[0] = -0.9676;
lequi[1] = -0.43076;
lequi[2] = 0;
lequi[3] = 0.43076;
lequi[4] = 0.9676;
}
else if (nbclass == 7) {
lequi[0] = -1.068;
lequi[1] = -0.566;
lequi[2] = -0.18;
lequi[3] = 0.18;
lequi[4] = 0.566;
lequi[5] = 1.068;
}
else if (nbclass == 8) {
lequi[0] = -1.1507;
lequi[1] = -0.6745;
lequi[2] = -0.3187;
lequi[3] = 0;
lequi[4] = 0.3187;
lequi[5] = 0.6745;
lequi[6] = 1.1507;
}
else if (nbclass == 9) {
lequi[0] = -1.2208;
lequi[1] = -0.7648;
lequi[2] = -0.4385;
lequi[3] = -0.1397;
lequi[4] = 0.1397;
lequi[5] = 0.4385;
lequi[6] = 0.7648;
lequi[7] = 1.2208;
}
else if (nbclass == 10) {
lequi[0] = -1.28155;
lequi[1] = -0.84162;
lequi[2] = -0.5244;
lequi[3] = -0.25335;
lequi[4] = 0;
lequi[5] = 0.25335;
lequi[6] = 0.5244;
lequi[7] = 0.84162;
lequi[8] = 1.28155;
}
else {
G_fatal_error(
_("Equiprobable classbreaks currently limited to 10 classes"));
}
AS_basic_stats(data, count, &stats);
/* Check if any of the classbreaks would fall outside of the range min-max
*/
j = 0;
for (i = 0; i < *nbreaks; i++) {
if ((lequi[i] * stats.stdev + stats.mean) >= stats.min &&
(lequi[i] * stats.stdev) + stats.mean <= stats.max) {
j++;
}
}
if (j < (*nbreaks)) {
G_warning(
_("There are classbreaks outside the range min-max. Number of "
"classes reduced to %i, but using probabilities for %i classes."),
j + 1, *nbreaks + 1);
G_realloc(classbreaks, j * sizeof(double));
for (i = 0; i < j; i++)
classbreaks[i] = 0;
}
j = 0;
for (i = 0; i < *nbreaks; i++) {
if ((lequi[i] * stats.stdev + stats.mean) >= stats.min &&
(lequi[i] * stats.stdev) + stats.mean <= stats.max) {
classbreaks[j] = lequi[i] * stats.stdev + stats.mean;
j++;
}
}
*nbreaks = j;
G_free(lequi);
return (1);
}
/* FIXME: there seems to a problem with array overflow, probably due to
the fact that the code was ported from fortran which has 1-based arrays */
double AS_class_discont(double *data, int count, int nbreaks,
double *classbreaks)
{
int *num, nbclass;
double *no, *zz, /* *nz, */ *xn, *co;
double *x; /* Vector standardized observations */
int i, j, k;
double min = 0, max = 0, rangemax = 0;
int n = 0;
double rangemin = 0, xlim = 0;
double dmax = 0.0 /*, d2 = 0.0, dd = 0.0, p = 0.0 */;
int nf = 0, nmax = 0;
double *abc;
int nd = 0;
double den = 0, d = 0;
int im = 0, ji = 0;
int tmp = 0;
int nff = 0, jj = 0, no1 = 0, no2 = 0;
double f = 0, xt1 = 0, xt2 = 0, chi2 = 1000.0, xnj_1 = 0, xj_1 = 0;
/*get the number of values */
n = count;
nbclass = nbreaks + 1;
num = G_malloc((nbclass + 1) * sizeof(int));
no = G_malloc((nbclass + 1) * sizeof(double));
zz = G_malloc((nbclass + 1) * sizeof(double));
/* nz = G_malloc(3 * sizeof(double)); */
xn = G_malloc((n + 1) * sizeof(double));
co = G_malloc((nbclass + 1) * sizeof(double));
/* We copy the array of values to x, in order to be able to standardize it
*/
x = G_malloc((n + 1) * sizeof(double));
x[0] = n;
xn[0] = 0;
min = data[0];
max = data[count - 1];
for (i = 1; i <= n; i++)
x[i] = data[i - 1];
rangemax = max - min;
rangemin = rangemax;
for (i = 2; i <= n; i++) {
if (x[i] != x[i - 1] && x[i] - x[i - 1] < rangemin)
rangemin = x[i] - x[i - 1]; /* rangemin = minimal distance */
}
/* STANDARDIZATION
* and creation of the number vector (xn) */
for (i = 1; i <= n; i++) {
x[i] = (x[i] - min) / rangemax;
xn[i] = i / (double)n;
}
xlim = rangemin / rangemax;
rangemin = rangemin / 2.0;
/* Searching for the limits */
num[1] = n;
abc = G_malloc(3 * sizeof(double));
/* Loop through possible solutions */
for (i = 1; i <= nbclass; i++) {
nmax = 0;
dmax = 0.0;
/* d2 = 0.0; */
nf = 0; /*End number */
/* Loop through classes */
for (j = 1; j <= i; j++) {
nd = nf; /*Start number */
nf = num[j];
co[j] = 10e37;
AS_eqdrt(x, xn, nd, nf, abc);
den = sqrt(pow(abc[1], 2) + 1.0);
nd++;
/* Loop through observations */
for (k = nd; k <= nf; k++) {
if (abc[2] == 0.0)
d = fabs((-1.0 * abc[1] * x[k]) + xn[k] - abc[0]) / den;
else
d = fabs(x[k] - abc[2]);
/* d2 += pow(d, 2); */
if (x[k] - x[nd] < xlim)
continue;
if (x[nf] - x[k] < xlim)
continue;
if (d <= dmax)
continue;
dmax = d;
nmax = k;
}
nd--; /* A VERIFIER! */
if (x[nf] != x[nd]) {
if (nd != 0)
co[j] = (xn[nf] - xn[nd]) / (x[nf] - x[nd]);
else
co[j] = (xn[nf]) / (x[nf]); /* A VERIFIER! */
}
}
/* if (i == 1)
dd = d2;
p = d2 / dd; */
for (j = 1; j <= i; j++) {
no[j] = num[j];
zz[j] = x[num[j]] * rangemax + min;
if (j == i)
continue;
if (co[j] > co[j + 1]) {
zz[j] = zz[j] + rangemin;
continue;
}
zz[j] = zz[j] - rangemin;
no[j] = no[j] - 1;
}
im = i - 1;
if (im != 0.0) {
for (j = 1; j <= im; j++) {
ji = i + 1 - j;
no[ji] -= no[ji - 1];
}
}
if (nmax == 0) {
break;
}
nff = i + 2;
tmp = 0;
for (j = 1; j <= i; j++) {
jj = nff - j;
if (num[jj - 1] < nmax) {
num[jj] = nmax;
tmp = 1;
break;
}
num[jj] = num[jj - 1];
}
if (tmp == 0) {
num[1] = nmax;
jj = 1;
}
if (jj == 1) {
xnj_1 = 0;
xj_1 = 0;
}
else {
xnj_1 = xn[num[jj - 1]];
xj_1 = x[num[jj - 1]];
}
no1 = (xn[num[jj]] - xnj_1) * n;
no2 = (xn[num[jj + 1]] - xn[num[jj]]) * n;
f = (xn[num[jj + 1]] - xnj_1) / (x[num[jj + 1]] - xj_1);
f *= n;
xt1 = (x[num[jj]] - xj_1) * f;
xt2 = (x[num[jj + 1]] - x[num[jj]]) * f;
if (xt2 == 0) {
xt2 = rangemin / 2.0 / rangemax * f;
xt1 -= xt2;
}
else if (xt1 * xt2 == 0) {
xt1 = rangemin / 2.0 / rangemax * f;
xt2 -= xt1;
}
/* calculate chi-square to indicate statistical significance of new
* class, i.e. how probable would it be that the new class could be the
* result of purely random choice */
if (chi2 > pow((double)((no1 - no2) - (xt1 - xt2)), 2) / (xt1 + xt2))
chi2 = pow((double)((no1 - no2) - (xt1 - xt2)), 2) / (xt1 + xt2);
}
/* Fill up classbreaks of i <=nbclass classes */
for (j = 0; j <= (i - 1); j++)
classbreaks[j] = zz[j + 1];
return (chi2);
}
int AS_class_frequencies(double *data, int count, int nbreaks,
double *classbreaks, int *frequencies)
{
int i, j;
/* min = data[0];
max = data[count - 1]; */
/* count cases in all classes, except for last class */
i = 0;
for (j = 0; j < nbreaks; j++) {
while (data[i] <= classbreaks[j]) {
frequencies[j]++;
i++;
}
}
/*Now count cases in last class */
for (; i < count; i++) {
frequencies[nbreaks]++;
}
return (1);
}
|