1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
/*****************************************************************************
*
* MODULE: Grass numerical math interface
* AUTHOR(S): Soeren Gebbert, Berlin (GER) Dec 2006
* soerengebbert <at> googlemail <dot> com
*
* PURPOSE: grass blas implementation
* part of the gmath library
*
* COPYRIGHT: (C) 2010 by the GRASS Development Team
*
* This program is free software under the GNU General Public
* License (>=v2). Read the file COPYING that comes with GRASS
* for details.
*
*****************************************************************************/
#include <math.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <grass/gmath.h>
#include <grass/gis.h>
#define EPSILON 0.00000000000000001
/*!
* \brief Compute the matrix - vector product
* of matrix A and vector x.
*
* This function is multi-threaded with OpenMP and can be called within a
* parallel OpenMP region.
*
* y = A * x
*
*
* \param A (double ** )
* \param x (double *)
* \param y (double *)
* \param rows (int)
* \param cols (int)
* \return (void)
*
* */
void G_math_d_Ax(double **A, double *x, double *y, int rows, int cols)
{
int i, j;
double tmp;
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++) {
tmp = 0;
for (j = cols - 1; j >= 0; j--) {
tmp += A[i][j] * x[j];
}
y[i] = tmp;
}
return;
}
/*!
* \brief Compute the matrix - vector product
* of matrix A and vector x.
*
* This function is multi-threaded with OpenMP and can be called within a
* parallel OpenMP region.
*
* y = A * x
*
*
* \param A (float ** )
* \param x (float *)
* \param y (float *)
* \param rows (int)
* \param cols (int)
* \return (void)
*
* */
void G_math_f_Ax(float **A, float *x, float *y, int rows, int cols)
{
int i, j;
float tmp;
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++) {
tmp = 0;
for (j = cols - 1; j >= 0; j--) {
tmp += A[i][j] * x[j];
}
y[i] = tmp;
}
return;
}
/*!
* \brief Compute the dyadic product of two vectors.
* The result is stored in the matrix A.
*
* This function is multi-threaded with OpenMP and can be called within a
* parallel OpenMP region.
*
* A = x * y^T
*
*
* \param x (double *)
* \param y (double *)
* \param A (float **) -- matrix of size rows*cols
* \param rows (int) -- length of vector x
* \param cols (int) -- length of vector y
* \return (void)
*
* */
void G_math_d_x_dyad_y(double *x, double *y, double **A, int rows, int cols)
{
int i, j;
#pragma omp for schedule(static) private(i, j)
for (i = 0; i < rows; i++) {
for (j = cols - 1; j >= 0; j--) {
A[i][j] = x[i] * y[j];
}
}
return;
}
/*!
* \brief Compute the dyadic product of two vectors.
* The result is stored in the matrix A.
*
* This function is multi-threaded with OpenMP and can be called within a
* parallel OpenMP region.
*
* A = x * y^T
*
*
* \param x (float *)
* \param y (float *)
* \param A (float **= -- matrix of size rows*cols
* \param rows (int) -- length of vector x
* \param cols (int) -- length of vector y
* \return (void)
*
* */
void G_math_f_x_dyad_y(float *x, float *y, float **A, int rows, int cols)
{
int i, j;
#pragma omp for schedule(static) private(i, j)
for (i = 0; i < rows; i++) {
for (j = cols - 1; j >= 0; j--) {
A[i][j] = x[i] * y[j];
}
}
return;
}
/*!
* \brief Compute the scaled matrix - vector product
* of matrix double **A and vector x and y.
*
* z = a * A * x + b * y
*
* This function is multi-threaded with OpenMP and can be called within a
* parallel OpenMP region.
*
*
* \param A (double **)
* \param x (double *)
* \param y (double *)
* \param a (double)
* \param b (double)
* \param z (double *)
* \param rows (int)
* \param cols (int)
* \return (void)
*
* */
void G_math_d_aAx_by(double **A, double *x, double *y, double a, double b,
double *z, int rows, int cols)
{
int i, j;
double tmp;
/*catch specific cases */
if (a == b) {
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++) {
tmp = 0;
for (j = cols - 1; j >= 0; j--) {
tmp += A[i][j] * x[j] + y[j];
}
z[i] = a * tmp;
}
}
else if (b == -1.0) {
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++) {
tmp = 0;
for (j = cols - 1; j >= 0; j--) {
tmp += a * A[i][j] * x[j] - y[j];
}
z[i] = tmp;
}
}
else if (b == 0.0) {
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++) {
tmp = 0;
for (j = cols - 1; j >= 0; j--) {
tmp += A[i][j] * x[j];
}
z[i] = a * tmp;
}
}
else if (a == -1.0) {
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++) {
tmp = 0;
for (j = cols - 1; j >= 0; j--) {
tmp += b * y[j] - A[i][j] * x[j];
}
z[i] = tmp;
}
}
else {
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++) {
tmp = 0;
for (j = cols - 1; j >= 0; j--) {
tmp += a * A[i][j] * x[j] + b * y[j];
}
z[i] = tmp;
}
}
return;
}
/*!
* \brief Compute the scaled matrix - vector product
* of matrix A and vectors x and y.
*
* z = a * A * x + b * y
*
* This function is multi-threaded with OpenMP and can be called within a
* parallel OpenMP region.
*
*
* \param A (float **)
* \param x (float *)
* \param y (float *)
* \param a (float)
* \param b (float)
* \param z (float *)
* \param rows (int)
* \param cols (int)
* \return (void)
*
* */
void G_math_f_aAx_by(float **A, float *x, float *y, float a, float b, float *z,
int rows, int cols)
{
int i, j;
float tmp;
/*catch specific cases */
if (a == b) {
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++) {
tmp = 0;
for (j = cols - 1; j >= 0; j--) {
tmp += A[i][j] * x[j] + y[j];
}
z[i] = a * tmp;
}
}
else if (b == -1.0) {
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++) {
tmp = 0;
for (j = cols - 1; j >= 0; j--) {
tmp += a * A[i][j] * x[j] - y[j];
}
z[i] = tmp;
}
}
else if (b == 0.0) {
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++) {
tmp = 0;
for (j = cols - 1; j >= 0; j--) {
tmp += A[i][j] * x[j];
}
z[i] = a * tmp;
}
}
else if (a == -1.0) {
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++) {
tmp = 0;
for (j = cols - 1; j >= 0; j--) {
tmp += b * y[j] - A[i][j] * x[j];
}
z[i] = tmp;
}
}
else {
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++) {
tmp = 0;
for (j = cols - 1; j >= 0; j--) {
tmp += a * A[i][j] * x[j] + b * y[j];
}
z[i] = tmp;
}
}
return;
}
/*!
* \fn int G_math_d_A_T(double **A, int rows)
*
* \brief Compute the transposition of matrix A.
* Matrix A will be overwritten.
*
* This function is multi-threaded with OpenMP and can be called within a
* parallel OpenMP region.
*
* Returns 0.
*
* \param A (double **)
* \param rows (int)
* \return int
*/
int G_math_d_A_T(double **A, int rows)
{
int i, j;
double tmp;
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++)
for (j = 0; j < i; j++) {
tmp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = tmp;
}
return 0;
}
/*!
* \fn int G_math_f_A_T(float **A, int rows)
*
* \brief Compute the transposition of matrix A.
* Matrix A will be overwritten.
*
* This function is multi-threaded with OpenMP and can be called within a
* parallel OpenMP region.
*
* Returns 0.
*
* \param A (float **)
* \param rows (int)
* \return int
*/
int G_math_f_A_T(float **A, int rows)
{
int i, j;
float tmp;
#pragma omp for schedule(static) private(i, j, tmp)
for (i = 0; i < rows; i++)
for (j = 0; j < i; j++) {
tmp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = tmp;
}
return 0;
}
|