1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/*****************************************************************************
*
* MODULE: Grass PDE Numerical Library
* AUTHOR(S): Soeren Gebbert, Berlin (GER) Dec 2006
* soerengebbert <at> gmx <dot> de
*
* PURPOSE: Unit tests for les solving
*
* COPYRIGHT: (C) 2000 by the GRASS Development Team
*
* This program is free software under the GNU General Public
* License (>=v2). Read the file COPYING that comes with GRASS
* for details.
*
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <grass/glocale.h>
#include <grass/gmath.h>
#include "test_gmath_lib.h"
#define EPSILON_DIRECT 1.0E-10
#define EPSILON_ITER 1.0E-4
/* prototypes */
static int test_ccmath_wrapper(void);
/* ************************************************************************* */
/* Perform the solver unit tests ****************************************** */
/* ************************************************************************* */
int unit_test_ccmath_wrapper(void)
{
int sum = 0;
G_message(_("\n++ Running ccmath wrapper unit tests ++"));
sum += test_ccmath_wrapper();
if (sum > 0)
G_warning(_("\n-- ccmath wrapper unit tests failure --"));
else
G_message(_("\n-- ccmath wrapper unit tests finished successfully --"));
return sum;
}
/* *************************************************************** */
/* Test all implemented ccmath wrapper *** */
/* *************************************************************** */
int test_ccmath_wrapper(void)
{
G_math_les *les;
int sum = 0;
double val = 0.0, val2 = 0.0;
G_message("\t * testing ccmath lu solver with symmetric matrix\n");
les = create_normal_symmetric_les(TEST_NUM_ROWS);
G_math_d_copy(les->b, les->x, les->rows);
G_math_solv(les->A, les->x, les->rows);
G_math_print_les(les);
G_math_d_asum_norm(les->x, &val, les->rows);
if ((val - (double)les->rows) > EPSILON_ITER) {
G_warning("Error in G_math_solv abs %2.20f != %i", val, les->rows);
sum++;
}
G_math_free_les(les);
G_message("\t * testing ccmath lu solver with unsymmetric matrix\n");
les = create_normal_unsymmetric_les(TEST_NUM_ROWS);
G_math_d_copy(les->b, les->x, les->rows);
G_math_solvps(les->A, les->x, les->rows);
G_math_print_les(les);
G_math_d_asum_norm(les->x, &val, les->rows);
if ((val - (double)les->rows) > EPSILON_ITER) {
G_warning("Error in G_math_solv abs %2.20f != %i", val, les->rows);
sum++;
}
G_math_free_les(les);
G_message(
"\t * testing ccmath positive definite solver with symmetric matrix\n");
les = create_normal_symmetric_les(TEST_NUM_ROWS);
G_math_d_copy(les->b, les->x, les->rows);
G_math_solvps(les->A, les->x, les->rows);
G_math_print_les(les);
G_math_d_asum_norm(les->x, &val, les->rows);
if ((val - (double)les->rows) > EPSILON_ITER) {
G_warning("Error in G_math_solvps abs %2.20f != %i", val, les->rows);
sum++;
}
G_math_free_les(les);
G_message("\t * testing ccmath matrix inversion with symmetric matrix\n");
les = create_normal_symmetric_les(TEST_NUM_ROWS);
G_math_minv(les->A, les->rows);
G_math_d_Ax(les->A, les->b, les->x, les->rows, les->rows);
G_math_print_les(les);
G_math_d_asum_norm(les->x, &val, les->rows);
if ((val - (double)les->rows) > EPSILON_ITER) {
G_warning("Error in G_math_minv abs %2.20f != %i", val, les->rows);
sum++;
}
G_math_free_les(les);
G_message("\t * testing ccmath matrix inversion with unsymmetric matrix\n");
les = create_normal_unsymmetric_les(TEST_NUM_ROWS);
G_math_minv(les->A, les->rows);
G_math_d_Ax(les->A, les->b, les->x, les->rows, les->rows);
G_math_print_les(les);
G_math_d_asum_norm(les->x, &val, les->rows);
if ((val - (double)les->rows) > EPSILON_ITER) {
G_warning("Error in G_math_minv abs %2.20f != %i", val, les->rows);
sum++;
}
G_math_free_les(les);
G_message("\t * testing ccmath positive definite matrix inversion with "
"symmetric matrix\n");
les = create_normal_symmetric_les(TEST_NUM_ROWS);
G_math_psinv(les->A, les->rows);
G_math_d_Ax(les->A, les->b, les->x, les->rows, les->rows);
G_math_print_les(les);
G_math_d_asum_norm(les->x, &val, les->rows);
if ((val - (double)les->rows) > EPSILON_ITER) {
G_warning("Error in G_math_psinv abs %2.20f != %i", val, les->rows);
sum++;
}
G_math_free_les(les);
G_message("\t * testing ccmath eigenvalue solver with symmetric matrix\n");
les = create_normal_symmetric_les(TEST_NUM_ROWS);
// Results of the eigenvalue computation with ocatve
les->b[9] = 0.043264;
les->b[8] = 0.049529;
les->b[7] = 0.057406;
les->b[6] = 0.067696;
les->b[5] = 0.081639;
les->b[4] = 0.101357;
les->b[3] = 0.130298;
les->b[2] = 0.174596;
les->b[1] = 0.256157;
les->b[0] = 0.502549;
G_math_eigval(les->A, les->x, les->rows);
G_math_print_les(les);
G_math_d_asum_norm(les->b, &val, les->rows);
G_math_d_asum_norm(les->x, &val2, les->rows);
if ((val - val2) > EPSILON_ITER) {
G_warning("Error in G_math_eigv abs %2.20f != %f", val, val2);
sum++;
}
G_math_free_les(les);
G_message(
"\t * testing ccmath eigenvector computation with symmetric matrix\n");
les = create_normal_symmetric_les(TEST_NUM_ROWS);
// Results of the eigenvalue computation with ocatve
les->b[9] = 0.043264;
les->b[8] = 0.049529;
les->b[7] = 0.057406;
les->b[6] = 0.067696;
les->b[5] = 0.081639;
les->b[4] = 0.101357;
les->b[3] = 0.130298;
les->b[2] = 0.174596;
les->b[1] = 0.256157;
les->b[0] = 0.502549;
G_math_eigen(les->A, les->x, les->rows);
G_math_print_les(les);
G_math_d_asum_norm(les->b, &val, les->rows);
G_math_d_asum_norm(les->x, &val2, les->rows);
if ((val - val2) > EPSILON_ITER) {
G_warning("Error in G_math_eigen abs %2.20f != %f", val, val2);
sum++;
}
G_math_free_les(les);
G_message("\t * testing ccmath singulare value decomposition with "
"symmetric matrix\n");
les = create_normal_symmetric_les(TEST_NUM_ROWS);
G_math_svdval(les->x, les->A, les->rows, les->rows);
G_math_print_les(les);
G_math_free_les(les);
return sum;
}
|