1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
|
/*!
\file lib/ogsf/gs_query.c
\brief OGSF library - query (lower level functions)
GRASS OpenGL gsurf OGSF Library
(C) 1999-2008 by the GRASS Development Team
This program is free software under the
GNU General Public License (>=v2).
Read the file COPYING that comes with GRASS
for details.
\author Bill Brown USACERL (January 1994)
\author Doxygenized by Martin Landa <landa.martin gmail.com> (May 2008)
*/
#include <math.h>
#include <grass/gis.h>
#include <grass/ogsf.h>
/*!
\brief Values needed for Ray-Convex Polyhedron Intersection Test below
originally by Eric Haines, erich@eye.com
*/
#ifndef HUGE_VAL
#define HUGE_VAL 1.7976931348623157e+308
#endif
/* return codes */
#define MISSED 0
#define FRONTFACE 1
#define BACKFACE -1
/* end Ray-Convex Polyhedron Intersection Test values */
/*!
\brief Crude method of intersecting line of sight with closest part of
surface.
Uses los vector to determine the point of first intersection
which is returned in point. Returns 0 if los doesn't intersect.
\param surfid surface id
\param los should be in surf-world coordinates
\param[out] point intersect point (real)
\return 0 on failure
\return 1 on success
*/
int gs_los_intersect1(int surfid, float (*los)[3], float *point)
{
float dx, dy, dz, u_d[3];
float a[3], incr, min_incr, tlen, len;
int outside, above, below, edge, istep;
float b[3];
geosurf *gs;
typbuff *buf;
G_debug(3, "gs_los_intersect1():");
if (NULL == (gs = gs_get_surf(surfid))) {
return (0);
}
if (0 == GS_v3dir(los[FROM], los[TO], u_d)) {
return (0);
}
buf = gs_get_att_typbuff(gs, ATT_TOPO, 0);
istep = edge = below = 0;
len = 0.0;
tlen = GS_distance(los[FROM], los[TO]);
incr = tlen / 1000.0;
min_incr = incr / 1000.0;
dx = incr * u_d[X];
dy = incr * u_d[Y];
dz = incr * u_d[Z];
a[X] = los[FROM][X];
a[Y] = los[FROM][Y];
a[Z] = los[FROM][Z];
b[X] = a[X] - gs->x_trans;
b[Y] = a[Y] - gs->y_trans;
if (viewcell_tri_interp(gs, buf, b, 0)) {
/* expects surface coords */
b[Z] += gs->z_trans;
if (a[Z] < b[Z]) {
/* viewing from below surface */
/* don't use this method
fprintf(stderr,"view from below\n");
below = 1;
*/
return (0);
}
}
while (incr > min_incr) {
outside = 0;
above = 0;
b[X] = a[X] - gs->x_trans;
b[Y] = a[Y] - gs->y_trans;
if (viewcell_tri_interp(gs, buf, b, 0)) {
/* ignores masks */
b[Z] += gs->z_trans;
above = (a[Z] > b[Z]);
}
else {
outside = 1;
if (istep > 10) {
edge = 1;
below = 1;
}
}
while (outside || above) {
a[X] += dx;
a[Y] += dy;
a[Z] += dz;
len += incr;
outside = 0;
above = 0;
b[X] = a[X] - gs->x_trans;
b[Y] = a[Y] - gs->y_trans;
if (viewcell_tri_interp(gs, buf, b, 0)) {
b[Z] += gs->z_trans;
above = (a[Z] > b[Z]);
}
else {
outside = 1;
}
if (len > tlen) {
return 0; /* over surface */ /* under surface */
}
}
/* could look for spikes here - see if any data points along
shadow of line on surf go above los */
/* back up several spots? */
a[X] -= (1.0 * dx);
a[Y] -= (1.0 * dy);
a[Z] -= (1.0 * dz);
incr /= 2.0;
++istep;
dx = incr * u_d[X];
dy = incr * u_d[Y];
dz = incr * u_d[Z];
}
if ((edge) && (b[Z] - (a[Z] + dz * 2.0) > incr * u_d[Z])) {
G_debug(3, " looking under surface");
return 0;
}
point[X] = b[X];
point[Y] = b[Y];
point[Z] = b[Z] - gs->z_trans;
return (1);
}
/*!
\brief Crude method of intersecting line of sight with closest part of
surface.
This version uses the shadow of the los projected down to
the surface to generate a line_on_surf, then follows each
point in that line until the los intersects it.
\param surfid surface id
\param los should be in surf-world coordinates
\param[out] point intersect point (real)
\return 0 on failure
\return 1 on success
*/
int gs_los_intersect(int surfid, float **los, float *point)
{
double incr;
float p1, p2, u_d[3];
int above, ret, num, i, usedx;
float a[3], b[3];
float bgn[3], end[3], a1[3];
geosurf *gs;
typbuff *buf;
Point3 *points;
G_debug(3, "gs_los_intersect");
if (NULL == (gs = gs_get_surf(surfid))) {
return (0);
}
if (0 == GS_v3dir(los[FROM], los[TO], u_d)) {
return (0);
}
buf = gs_get_att_typbuff(gs, ATT_TOPO, 0);
GS_v3eq(bgn, los[FROM]);
GS_v3eq(end, los[TO]);
bgn[X] -= gs->x_trans;
bgn[Y] -= gs->y_trans;
end[X] -= gs->x_trans;
end[Y] -= gs->y_trans;
/* trans? */
points = gsdrape_get_allsegments(gs, bgn, end, &num);
/* DEBUG
{
float t1[3], t2[3];
t1[X] = los[FROM][X] ;
t1[Y] = los[FROM][Y] ;
t2[X] = los[TO][X] ;
t2[Y] = los[TO][Y] ;
GS_set_draw(GSD_FRONT);
gsd_pushmatrix();
gsd_do_scale(1);
gsd_translate(gs->x_trans, gs->y_trans, gs->z_trans);
gsd_linewidth(1);
gsd_color_func(GS_default_draw_color());
gsd_line_onsurf(gs, t1, t2);
gsd_popmatrix();
GS_set_draw(GSD_BACK);
gsd_flush();
}
fprintf(stderr,"%d points to check\n", num);
fprintf(stderr,"point0 = %.6lf %.6lf %.6lf FT =%.6lf %.6lf %.6lf\n",
points[0][X],points[0][Y],points[0][Z],
los[FROM][X],los[FROM][Y],los[FROM][Z]);
fprintf(stderr,"incr1 = %.6lf: %.6lf %.6lf
%.6lf\n",incr,u_d[X],u_d[Y],u_d[Z]); fprintf(stderr,"first point below
surf\n"); fprintf(stderr,"incr2 = %f\n", (float)incr);
fprintf(stderr,"(%d/%d) %f > %f\n", i,num, a[Z], points[i][Z]);
fprintf(stderr,"incr3 = %f\n", (float)incr);
fprintf(stderr,"all points above surf\n");
*/
if (num < 2) {
G_debug(3, " %d points to check", num);
return (0);
}
/* use larger of deltas for better precision */
usedx = (fabs(u_d[X]) > fabs(u_d[Y]));
if (usedx) {
incr = ((points[0][X] - (los[FROM][X] - gs->x_trans)) / u_d[X]);
}
else if (u_d[Y]) {
incr = ((points[0][Y] - (los[FROM][Y] - gs->y_trans)) / u_d[Y]);
}
else {
point[X] = los[FROM][X] - gs->x_trans;
point[Y] = los[FROM][Y] - gs->y_trans;
return (viewcell_tri_interp(gs, buf, point, 1));
}
/* DEBUG
fprintf(stderr,"-----------------------------\n");
fprintf(stderr,"%d points to check\n", num);
fprintf(stderr,"incr1 = %.6lf: %.9f %.9f
%.9f\n",incr,u_d[X],u_d[Y],u_d[Z]); fprintf(stderr,
"\tpoint0 = %.6f %.6f %.6f\n\tFT = %.6f %.6f %.6f\n\tpoint%d = %.6f
%.6f\n", points[0][X],points[0][Y],points[0][Z],
los[FROM][X],los[FROM][Y],los[FROM][Z],
num-1, points[num-1][X],points[num-1][Y]);
*/
/* This should bring us right above (or below) the first point */
a[X] = los[FROM][X] + incr * u_d[X] - gs->x_trans;
a[Y] = los[FROM][Y] + incr * u_d[Y] - gs->y_trans;
a[Z] = los[FROM][Z] + incr * u_d[Z] - gs->z_trans;
if (a[Z] < points[0][Z]) {
/* viewing from below surface */
/* don't use this method */
/* DEBUG
fprintf(stderr,"first point below surf\n");
fprintf(stderr,"aZ= %.6f point0 = %.6f %.6f %.6f FT =%.6f %.6f
%.6f\n", a[Z], points[0][X],points[0][Y],points[0][Z],
los[FROM][X],los[FROM][Y],los[FROM][Z]);
*/
return (0);
}
GS_v3eq(a1, a);
GS_v3eq(b, a);
for (i = 1; i < num; i++) {
if (usedx) {
incr = ((points[i][X] - a1[X]) / u_d[X]);
}
else {
incr = ((points[i][Y] - a1[Y]) / u_d[Y]);
}
a[X] = a1[X] + (incr * u_d[X]);
a[Y] = a1[Y] + (incr * u_d[Y]);
a[Z] = a1[Z] + (incr * u_d[Z]);
above = (a[Z] >= points[i][Z]);
if (above) {
GS_v3eq(b, a);
continue;
}
/*
* Now we know b[Z] is above points[i-1]
* and a[Z] is below points[i]
* Since there should only be one polygon along this seg,
* just interpolate to intersect
*/
if (usedx) {
incr = ((a[X] - b[X]) / u_d[X]);
}
else {
incr = ((a[Y] - b[Y]) / u_d[Y]);
}
if (1 == (ret = segs_intersect(1.0, points[i][Z], 0.0, points[i - 1][Z],
1.0, a[Z], 0.0, b[Z], &p1, &p2))) {
point[X] = points[i - 1][X] + (u_d[X] * incr * p1);
point[Y] = points[i - 1][Y] + (u_d[Y] * incr * p1);
point[Z] = p2;
return (1);
}
G_debug(3, " line of sight error %d", ret);
return 0;
}
/* over surface */
return 0;
}
/*!
\brief Ray-Convex Polyhedron Intersection Test
Originally by Eric Haines, erich@eye.com
This test checks the ray against each face of a polyhedron, checking whether
the set of intersection points found for each ray-plane intersection
overlaps the previous intersection results. If there is no overlap (i.e.
no line segment along the ray that is inside the polyhedron), then the
ray misses and returns 0; else 1 is returned if the ray is entering the
polyhedron, -1 if the ray originates inside the polyhedron. If there is
an intersection, the distance and the number of the face hit is returned.
\param org,dir origin and direction of ray
\param tmax maximum useful distance along ray
\param phdrn list of planes in convex polyhedron
\param ph_num number of planes in convex polyhedron
\param[out] tresult distance of intersection along ray
\param[out] pn number of face hit (0 to ph_num-1)
\return FACE code
*/
int RayCvxPolyhedronInt(Point3 org, Point3 dir, double tmax, Point4 *phdrn,
int ph_num, double *tresult, int *pn)
{
double tnear, tfar, t, vn, vd;
int fnorm_num, bnorm_num; /* front/back face # hit */
tnear = -HUGE_VAL;
tfar = tmax;
/* Test each plane in polyhedron */
for (; ph_num--;) {
/* Compute intersection point T and sidedness */
vd = DOT3(dir, phdrn[ph_num]);
vn = DOT3(org, phdrn[ph_num]) + phdrn[ph_num][W];
if (vd == 0.0) {
/* ray is parallel to plane - check if ray origin is inside plane's
half-space */
if (vn > 0.0) {
/* ray origin is outside half-space */
return (MISSED);
}
}
else {
/* ray not parallel - get distance to plane */
t = -vn / vd;
if (vd < 0.0) {
/* front face - T is a near point */
if (t > tfar) {
return (MISSED);
}
if (t > tnear) {
/* hit near face, update normal */
fnorm_num = ph_num;
tnear = t;
}
}
else {
/* back face - T is a far point */
if (t < tnear) {
return (MISSED);
}
if (t < tfar) {
/* hit far face, update normal */
bnorm_num = ph_num;
tfar = t;
}
}
}
}
/* survived all tests */
/* Note: if ray originates on polyhedron, may want to change 0.0 to some
* epsilon to avoid intersecting the originating face.
*/
if (tnear >= 0.0) {
/* outside, hitting front face */
*tresult = tnear;
*pn = fnorm_num;
return (FRONTFACE);
}
else {
if (tfar < tmax) {
/* inside, hitting back face */
*tresult = tfar;
*pn = bnorm_num;
return (BACKFACE);
}
else {
/* inside, but back face beyond tmax */
return (MISSED);
}
}
}
/*!
\brief Get data bounds for plane
\param[out] planes
*/
void gs_get_databounds_planes(Point4 *planes)
{
float n, s, w, e, b, t;
Point3 tlfront, brback;
GS_get_zrange(&b, &t, 0);
gs_get_xrange(&w, &e);
gs_get_yrange(&s, &n);
tlfront[X] = tlfront[Y] = 0.0;
tlfront[Z] = t;
brback[X] = e - w;
brback[Y] = n - s;
brback[Z] = b;
/* top */
planes[0][X] = planes[0][Y] = 0.0;
planes[0][Z] = 1.0;
planes[0][W] = -(DOT3(planes[0], tlfront));
/* bottom */
planes[1][X] = planes[1][Y] = 0.0;
planes[1][Z] = -1.0;
planes[1][W] = -(DOT3(planes[1], brback));
/* left */
planes[2][Y] = planes[2][Z] = 0.0;
planes[2][X] = -1.0;
planes[2][W] = -(DOT3(planes[2], tlfront));
/* right */
planes[3][Y] = planes[3][Z] = 0.0;
planes[3][X] = 1.0;
planes[3][W] = -(DOT3(planes[3], brback));
/* front */
planes[4][X] = planes[4][Z] = 0.0;
planes[4][Y] = -1.0;
planes[4][W] = -(DOT3(planes[4], tlfront));
/* back */
planes[5][X] = planes[5][Z] = 0.0;
planes[5][Y] = 1.0;
planes[5][W] = -(DOT3(planes[5], brback));
return;
}
/*!
Gets all current cutting planes & data bounding planes
Intersects los with resulting convex polyhedron, then replaces los[FROM] with
first point on ray inside data.
\param[out] los
\return 0 on failure
\return 1 on success
*/
int gs_setlos_enterdata(Point3 *los)
{
Point4 planes[12]; /* MAX_CPLANES + 6 - should define this */
Point3 dir;
double dist, maxdist;
int num, ret, retp; /* might want to tell if retp is a clipping plane */
gs_get_databounds_planes(planes);
num = gsd_get_cplanes(planes + 6);
GS_v3dir(los[FROM], los[TO], dir);
maxdist = GS_distance(los[FROM], los[TO]);
ret = RayCvxPolyhedronInt(los[0], dir, maxdist, planes, num + 6, &dist,
&retp);
if (ret == MISSED) {
return (0);
}
if (ret == FRONTFACE) {
GS_v3mult(dir, (float)dist);
GS_v3add(los[FROM], dir);
}
return (1);
}
/***********************************************************************/
/* DEBUG ****
void pr_plane(int pnum)
{
switch(pnum)
{
case 0:
fprintf(stderr,"top plane");
break;
case 1:
fprintf(stderr,"bottom plane");
break;
case 2:
fprintf(stderr,"left plane");
break;
case 3:
fprintf(stderr,"right plane");
break;
case 4:
fprintf(stderr,"front plane");
break;
case 5:
fprintf(stderr,"back plane");
break;
default:
fprintf(stderr,"clipping plane %d", 6 - pnum);
break;
}
return;
}
******* */
|