1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/*!
\file lib/raster/interp.c
\brief Raster Library - Interpolation methods
(C) 2001-2009,2013 GRASS Development Team
This program is free software under the GNU General Public License
(>=v2). Read the file COPYING that comes with GRASS for details.
\author Original author CERL
*/
#include <math.h>
#include <string.h>
#include <grass/gis.h>
#include <grass/raster.h>
#include <grass/glocale.h>
DCELL Rast_interp_linear(double u, DCELL c0, DCELL c1)
{
return u * (c1 - c0) + c0;
}
DCELL Rast_interp_bilinear(double u, double v, DCELL c00, DCELL c01, DCELL c10,
DCELL c11)
{
DCELL c0 = Rast_interp_linear(u, c00, c01);
DCELL c1 = Rast_interp_linear(u, c10, c11);
return Rast_interp_linear(v, c0, c1);
}
DCELL Rast_interp_cubic(double u, DCELL c0, DCELL c1, DCELL c2, DCELL c3)
{
return (u * (u * (u * (c3 - 3 * c2 + 3 * c1 - c0) +
(-c3 + 4 * c2 - 5 * c1 + 2 * c0)) +
(c2 - c0)) +
2 * c1) /
2;
}
DCELL Rast_interp_bicubic(double u, double v, DCELL c00, DCELL c01, DCELL c02,
DCELL c03, DCELL c10, DCELL c11, DCELL c12, DCELL c13,
DCELL c20, DCELL c21, DCELL c22, DCELL c23, DCELL c30,
DCELL c31, DCELL c32, DCELL c33)
{
DCELL c0 = Rast_interp_cubic(u, c00, c01, c02, c03);
DCELL c1 = Rast_interp_cubic(u, c10, c11, c12, c13);
DCELL c2 = Rast_interp_cubic(u, c20, c21, c22, c23);
DCELL c3 = Rast_interp_cubic(u, c30, c31, c32, c33);
return Rast_interp_cubic(v, c0, c1, c2, c3);
}
DCELL Rast_interp_lanczos(double u, double v, DCELL *c)
{
double uweight[5], vweight[5], d, d_pi;
double usum, vsum;
DCELL c0, c1, c2, c3, c4;
double sind, sincd1, sincd2;
d_pi = u * M_PI;
sind = 2 * sin(d_pi);
sincd1 = sind * sin(d_pi / 2);
uweight[2] = (u == 0 ? 1 : sincd1 / (d_pi * d_pi));
usum = uweight[2];
d = u + 2;
d_pi = d * M_PI;
if (d > 2)
uweight[0] = 0.;
else
uweight[0] = (d == 0 ? 1 : -sincd1 / (d_pi * d_pi));
usum += uweight[0];
d = u + 1.;
d_pi = d * M_PI;
sincd2 = sind * sin(d_pi / 2);
uweight[1] = (d == 0 ? 1 : -sincd2 / (d_pi * d_pi));
usum += uweight[1];
d = u - 1.;
d_pi = d * M_PI;
uweight[3] = (d == 0 ? 1 : sincd2 / (d_pi * d_pi));
usum += uweight[3];
d = u - 2.;
d_pi = d * M_PI;
if (d < -2)
uweight[4] = 0.;
else
uweight[4] = (d == 0 ? 1 : -sincd1 / (d_pi * d_pi));
usum += uweight[4];
d_pi = v * M_PI;
sind = 2 * sin(d_pi);
sincd1 = sind * sin(d_pi / 2);
vweight[2] = (v == 0 ? 1 : sincd1 / (d_pi * d_pi));
vsum = vweight[2];
d = v + 2;
d_pi = d * M_PI;
if (d > 2)
vweight[0] = 0;
else
vweight[0] = (d == 0 ? 1 : -sincd1 / (d_pi * d_pi));
vsum += vweight[0];
d = v + 1.;
d_pi = d * M_PI;
sincd2 = sind * sin(d_pi / 2);
vweight[1] = (d == 0 ? 1 : -sincd2 / (d_pi * d_pi));
vsum += vweight[1];
d = v - 1.;
d_pi = d * M_PI;
vweight[3] = (d == 0 ? 1 : sincd2 / (d_pi * d_pi));
vsum += vweight[3];
d = v - 2.;
d_pi = d * M_PI;
if (d < -2)
vweight[4] = 0;
else
vweight[4] = (d == 0 ? 1 : -sincd1 / (d_pi * d_pi));
vsum += vweight[4];
c0 = (c[0] * uweight[0] + c[1] * uweight[1] + c[2] * uweight[2] +
c[3] * uweight[3] + c[4] * uweight[4]);
c1 = (c[5] * uweight[0] + c[6] * uweight[1] + c[7] * uweight[2] +
c[8] * uweight[3] + c[9] * uweight[4]);
c2 = (c[10] * uweight[0] + c[11] * uweight[1] + c[12] * uweight[2] +
c[13] * uweight[3] + c[14] * uweight[4]);
c3 = (c[15] * uweight[0] + c[16] * uweight[1] + c[17] * uweight[2] +
c[18] * uweight[3] + c[19] * uweight[4]);
c4 = (c[20] * uweight[0] + c[21] * uweight[1] + c[22] * uweight[2] +
c[23] * uweight[3] + c[24] * uweight[4]);
return ((c0 * vweight[0] + c1 * vweight[1] + c2 * vweight[2] +
c3 * vweight[3] + c4 * vweight[4]) /
(usum * vsum));
}
DCELL Rast_interp_cubic_bspline(double u, DCELL c0, DCELL c1, DCELL c2,
DCELL c3)
{
return (u * (u * (u * (c3 - 3 * c2 + 3 * c1 - c0) +
(3 * c2 - 6 * c1 + 3 * c0)) +
(3 * c2 - 3 * c0)) +
c2 + 4 * c1 + c0) /
6;
}
DCELL Rast_interp_bicubic_bspline(double u, double v, DCELL c00, DCELL c01,
DCELL c02, DCELL c03, DCELL c10, DCELL c11,
DCELL c12, DCELL c13, DCELL c20, DCELL c21,
DCELL c22, DCELL c23, DCELL c30, DCELL c31,
DCELL c32, DCELL c33)
{
DCELL c0 = Rast_interp_cubic_bspline(u, c00, c01, c02, c03);
DCELL c1 = Rast_interp_cubic_bspline(u, c10, c11, c12, c13);
DCELL c2 = Rast_interp_cubic_bspline(u, c20, c21, c22, c23);
DCELL c3 = Rast_interp_cubic_bspline(u, c30, c31, c32, c33);
return Rast_interp_cubic_bspline(v, c0, c1, c2, c3);
}
/*!
\brief Get interpolation method from the option.
Calls G_fatal_error() on unknown interpolation method.
Supported methods:
- NEAREST
- BILINEAR
- CUBIC
\code
int interp_method
struct Option *opt_method;
opt_method = G_define_standard_option(G_OPT_R_INTERP_TYPE);
if (G_parser(argc, argv))
exit(EXIT_FAILURE);
interp_method = G_option_to_interp_type(opt_method);
\endcode
\param option pointer to interpolation option
\return interpolation method code
*/
int Rast_option_to_interp_type(const struct Option *option)
{
int interp_type;
interp_type = INTERP_UNKNOWN;
if (option->answer) {
if (strcmp(option->answer, "nearest") == 0) {
interp_type = INTERP_NEAREST;
}
else if (strcmp(option->answer, "bilinear") == 0) {
interp_type = INTERP_BILINEAR;
}
else if (strcmp(option->answer, "bicubic") == 0) {
interp_type = INTERP_BICUBIC;
}
}
if (interp_type == INTERP_UNKNOWN)
G_fatal_error(_("Unknown interpolation method: %s"), option->answer);
return interp_type;
}
|