1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*!
* \author
* Lubos Mitas (original program and various modifications)
*
* \author
* H. Mitasova,
* I. Kosinovsky, D. Gerdes,
* D. McCauley
* (GRASS4.1 version of the program and GRASS4.2 modifications)
*
* \author
* L. Mitas,
* H. Mitasova,
* I. Kosinovsky,
* D.Gerdes,
* D. McCauley
* (1993, 1995)
*
* \author modified by McCauley in August 1995
* \author modified by Mitasova in August 1995, Nov. 1996
*
* \copyright
* (C) 1993-1996 by Lubos Mitas and the GRASS Development Team
*
* \copyright
* This program is free software under the GNU General Public License (>=v2).
* Read the file COPYING that comes with GRASS for details.
*/
#include <stdio.h>
#include <math.h>
#include <unistd.h>
#include <grass/gis.h>
#include <grass/interpf.h>
#include <grass/gmath.h>
int IL_matrix_create(struct interp_params *params,
struct triple *points, /* points for interpolation */
int n_points, /* number of points */
double **matrix, /* matrix */
int *indx)
{
static double *A = NULL;
if (!A) {
if (!(A = G_alloc_vector((params->KMAX2 + 2) * (params->KMAX2 + 2) +
1))) {
fprintf(stderr, "Cannot allocate memory for A\n");
return -1;
}
}
return IL_matrix_create_alloc(params, points, n_points, matrix, indx, A);
}
/*!
* \brief Creates system of linear equations from interpolated points
*
* Creates system of linear equations represented by matrix using given
* points and interpolating function interp()
*
* \param params struct interp_params *
* \param points points for interpolation as struct triple
* \param n_points number of points
* \param[out] matrix the matrix
* \param indx
*
* \return -1 on failure, 1 on success
*/
int IL_matrix_create_alloc(struct interp_params *params,
struct triple *points, /* points for interpolation */
int n_points, /* number of points */
double **matrix, /* matrix */
int *indx, double *A
/* temporary matrix unique for all threads */)
{
double xx, yy;
double rfsta2, r;
double d;
int n1, k1, k2, k, i1, l, m, i, j;
double fstar2 = params->fi * params->fi / 4.;
double RO, amaxa;
double rsin = 0, rcos = 0, teta,
scale = 0; /*anisotropy parameters - added by JH 2002 */
double xxr, yyr;
if (params->theta) {
teta = params->theta * (M_PI / 180); /* deg to rad */
rsin = sin(teta);
rcos = cos(teta);
}
if (params->scalex)
scale = params->scalex;
n1 = n_points + 1;
/*
C GENERATION OF MATRIX
C FIRST COLUMN
*/
A[1] = 0.;
for (k = 1; k <= n_points; k++) {
i1 = k + 1;
A[i1] = 1.;
}
/*
C OTHER COLUMNS
*/
RO = -params->rsm;
/* fprintf (stderr, "sm[%d] = %f, ro=%f\n", 1, points[1].smooth, RO); */
for (k = 1; k <= n_points; k++) {
k1 = k * n1 + 1;
k2 = k + 1;
i1 = k1 + k;
if (params->rsm < 0.) { /*indicates variable smoothing */
A[i1] = -points[k - 1].sm; /* added by Mitasova nov. 96 */
/* G_debug(5, "sm[%d]=%f, a=%f", k, points[k-1].sm, A[i1]); */
}
else {
A[i1] = RO; /* constant smoothing */
}
/* if (i1 == 100) fprintf (stderr,i "A[%d] = %f\n", i1, A[i1]); */
/* A[i1] = RO; */
for (l = k2; l <= n_points; l++) {
xx = points[k - 1].x - points[l - 1].x;
yy = points[k - 1].y - points[l - 1].y;
if ((params->theta) && (params->scalex)) {
/* re run anisotropy */
xxr = xx * rcos + yy * rsin;
yyr = yy * rcos - xx * rsin;
xx = xxr;
yy = yyr;
r = scale * xx * xx + yy * yy;
rfsta2 = fstar2 * (scale * xx * xx + yy * yy);
}
else {
r = xx * xx + yy * yy;
rfsta2 = fstar2 * (xx * xx + yy * yy);
}
if (rfsta2 == 0.) {
fprintf(stderr, "ident. points in segm.\n");
fprintf(stderr, "x[%d]=%f, x[%d]=%f, y[%d]=%f, y[%d]=%f\n",
k - 1, points[k - 1].x, l - 1, points[l - 1].x, k - 1,
points[k - 1].y, l - 1, points[l - 1].y);
return -1;
}
i1 = k1 + l;
A[i1] = params->interp(r, params->fi);
}
}
/* C SYMMETRISATION */
amaxa = 1.;
for (k = 1; k <= n1; k++) {
k1 = (k - 1) * n1;
k2 = k + 1;
for (l = k2; l <= n1; l++) {
m = (l - 1) * n1 + k;
A[m] = A[k1 + l];
amaxa = amax1(A[m], amaxa);
}
}
m = 0;
for (i = 0; i <= n_points; i++) {
for (j = 0; j <= n_points; j++) {
m++;
matrix[i][j] = A[m];
}
}
G_debug(3, "calling G_ludcmp() n=%d indx=%d", n_points, *indx);
if (G_ludcmp(matrix, n_points + 1, indx, &d) <= 0) {
/* find the inverse of the matrix */
fprintf(stderr, "G_ludcmp() failed! n=%d d=%.2f\n", n_points, d);
return -1;
}
/* G_free_vector(A); */
return 1;
}
|