1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
|
/*!
\file lib/vector/Vlib/buffer2.c
\brief Vector library - nearest, adjust, parallel lines
Higher level functions for reading/writing/manipulating vectors.
(C) 2001-2009 by the GRASS Development Team
This program is free software under the
GNU General Public License (>=v2).
Read the file COPYING that comes with GRASS
for details.
\author Original author Radim Blazek (see buffer.c)
\author Rewritten by Rosen Matev (Google Summer of Code 2008)
*/
#include <stdlib.h>
#include <math.h>
#include <grass/gis.h>
#include <grass/vector.h>
#include <grass/glocale.h>
#include "dgraph.h"
#define LENGTH(DX, DY) (sqrt((DX * DX) + (DY * DY)))
#define PI M_PI
#define RIGHT_SIDE 1
#define LEFT_SIDE -1
#define LOOPED_LINE 1
#define NON_LOOPED_LINE 0
/* norm_vector() calculates normalized vector form two points */
static void norm_vector(double x1, double y1, double x2, double y2, double *x,
double *y)
{
double dx, dy, l;
dx = x2 - x1;
dy = y2 - y1;
if ((dx == 0) && (dy == 0)) {
/* assume that dx == dy == 0, which should give (NaN,NaN) */
/* without this, very small dx or dy could result in Infinity */
*x = 0;
*y = 0;
return;
}
l = LENGTH(dx, dy);
*x = dx / l;
*y = dy / l;
return;
}
static void rotate_vector(double x, double y, double cosa, double sina,
double *nx, double *ny)
{
*nx = x * cosa - y * sina;
*ny = x * sina + y * cosa;
return;
}
/*
* (x,y) should be normalized vector for common transforms; This func transforms
* (x,y) to a vector corresponding to da, db, dalpha params dalpha is in radians
*/
static void elliptic_transform(double x, double y, double da, double db,
double dalpha, double *nx, double *ny)
{
double cosa = cos(dalpha);
double sina = sin(dalpha);
/* double cc = cosa*cosa;
double ss = sina*sina;
double t = (da-db)*sina*cosa;
*nx = (da*cc + db*ss)*x + t*y;
*ny = (da*ss + db*cc)*y + t*x;
return; */
double va, vb;
va = (x * cosa + y * sina) * da;
vb = (x * (-sina) + y * cosa) * db;
*nx = va * cosa + vb * (-sina);
*ny = va * sina + vb * cosa;
return;
}
/*
* vect(x,y) must be normalized
* gives the tangent point of the tangent to ellpise(da,db,dalpha) parallel to
* vect(x,y) dalpha is in radians ellipse center is in (0,0)
*/
static void elliptic_tangent(double x, double y, double da, double db,
double dalpha, double *px, double *py)
{
double cosa = cos(dalpha);
double sina = sin(dalpha);
double u, v, len;
/* rotate (x,y) -dalpha radians */
rotate_vector(x, y, cosa, -sina, &x, &y);
/*u = (x + da*y/db)/2;
v = (y - db*x/da)/2; */
u = da * da * y;
v = -db * db * x;
len = da * db / sqrt(da * da * v * v + db * db * u * u);
u *= len;
v *= len;
rotate_vector(u, v, cosa, sina, px, py);
return;
}
/*
* !!! This is not line in GRASS' sense. See
* https://en.wikipedia.org/wiki/Line_%28mathematics%29
*/
static void line_coefficients(double x1, double y1, double x2, double y2,
double *a, double *b, double *c)
{
*a = y2 - y1;
*b = x1 - x2;
*c = x2 * y1 - x1 * y2;
return;
}
/*
* Finds intersection of two straight lines. Returns 0 if the lines are
* parallel, 1 if they cross, 2 if they are the same line.
* !!!!!!!!!!!!!!!! FIX THIS TOLERANCE CONSTANTS BAD (and UGLY) CODE !!!!!!!!!
*/
static int line_intersection(double a1, double b1, double c1, double a2,
double b2, double c2, double *x, double *y)
{
double d;
if (fabs(a2 * b1 - a1 * b2) == 0) {
if (fabs(a2 * c1 - a1 * c2) == 0)
return 2;
else
return 0;
}
else {
d = a1 * b2 - a2 * b1;
*x = (b1 * c2 - b2 * c1) / d;
*y = (c1 * a2 - c2 * a1) / d;
return 1;
}
}
static double angular_tolerance(double tol, double da, double db)
{
double a = MAX(da, db);
if (tol > a)
tol = a;
return 2 * acos(1 - tol / a);
}
/*
* This function generates parallel line (with loops, but not like the old
* ones). It is not to be used directly for creating buffers.
* + added elliptical buffers/par.lines support
*
* dalpha - direction of elliptical buffer major axis in degrees
* da - distance along major axis
* db: distance along minor (perp.) axis
* side: side >= 0 - right side, side < 0 - left side
* when (da == db) we have plain distances (old case)
* round - 1 for round corners, 0 for sharp corners. (tol is used only if round
* == 1)
*/
static void parallel_line(struct line_pnts *Points, double da, double db,
double dalpha, int side, int round, int caps,
int looped, double tol, struct line_pnts *nPoints)
{
int i, j, res, np;
double *x, *y;
double tx, ty, vx, vy, wx, wy, nx, ny, mx, my, rx, ry;
double vx1, vy1, wx1, wy1;
double a0, b0, c0, a1, b1, c1;
double phi1, phi2, delta_phi;
double nsegments, angular_tol, angular_step;
int inner_corner, turns360;
G_debug(3, "parallel_line()");
if (looped && 0) {
/* start point != end point */
return;
}
Vect_reset_line(nPoints);
if (looped) {
Vect_append_point(Points, Points->x[1], Points->y[1], Points->z[1]);
}
np = Points->n_points;
x = Points->x;
y = Points->y;
if ((np == 0) || (np == 1))
return;
if ((da == 0) || (db == 0)) {
Vect_copy_xyz_to_pnts(nPoints, x, y, NULL, np);
return;
}
side = (side >= 0) ? (1) : (-1); /* normalize variable */
dalpha *= PI / 180; /* convert dalpha from degrees to radians */
angular_tol = angular_tolerance(tol, da, db);
for (i = 0; i < np - 1; i++) {
/* save the old values */
a0 = a1;
b0 = b1;
c0 = c1;
wx = vx;
wy = vy;
norm_vector(x[i], y[i], x[i + 1], y[i + 1], &tx, &ty);
if ((tx == 0) && (ty == 0))
continue;
elliptic_tangent(side * tx, side * ty, da, db, dalpha, &vx, &vy);
nx = x[i] + vx;
ny = y[i] + vy;
mx = x[i + 1] + vx;
my = y[i + 1] + vy;
line_coefficients(nx, ny, mx, my, &a1, &b1, &c1);
if (i == 0) {
if (!looped)
Vect_append_point(nPoints, nx, ny, 0);
continue;
}
delta_phi = atan2(ty, tx) - atan2(y[i] - y[i - 1], x[i] - x[i - 1]);
if (delta_phi > PI)
delta_phi -= 2 * PI;
else if (delta_phi <= -PI)
delta_phi += 2 * PI;
/* now delta_phi is in [-pi;pi] */
turns360 = (fabs(fabs(delta_phi) - PI) < 1e-15);
inner_corner = (side * delta_phi <= 0) && (!turns360);
if ((turns360) && (!(caps && round))) {
if (caps) {
norm_vector(0, 0, vx, vy, &tx, &ty);
elliptic_tangent(side * tx, side * ty, da, db, dalpha, &tx,
&ty);
}
else {
tx = 0;
ty = 0;
}
Vect_append_point(nPoints, x[i] + wx + tx, y[i] + wy + ty, 0);
Vect_append_point(nPoints, nx + tx, ny + ty,
0); /* nx == x[i] + vx, ny == y[i] + vy */
}
else if ((!round) || inner_corner) {
res = line_intersection(a0, b0, c0, a1, b1, c1, &rx, &ry);
/* if (res == 0) {
G_debug(4, "a0=%.18f, b0=%.18f, c0=%.18f, a1=%.18f, b1=%.18f,
c1=%.18f", a0, b0, c0, a1, b1, c1); G_fatal_error("Two
consecutive line segments are parallel, but not on one straight
line! This should never happen."); return;
} */
if (res == 1) {
if (!round)
Vect_append_point(nPoints, rx, ry, 0);
else {
/* d = dig_distance2_point_to_line(rx,
ry, 0, x[i-1], y[i-1], 0, x[i], y[i], 0, 0, NULL, NULL,
NULL, NULL, NULL); if ( */
Vect_append_point(nPoints, rx, ry, 0);
}
}
}
else {
/* we should draw elliptical arc for outside corner */
/* inverse transforms */
elliptic_transform(wx, wy, 1 / da, 1 / db, dalpha, &wx1, &wy1);
elliptic_transform(vx, vy, 1 / da, 1 / db, dalpha, &vx1, &vy1);
phi1 = atan2(wy1, wx1);
phi2 = atan2(vy1, vx1);
delta_phi = side * (phi2 - phi1);
/* make delta_phi in [0, 2pi] */
if (delta_phi < 0)
delta_phi += 2 * PI;
nsegments = (int)(delta_phi / angular_tol) + 1;
angular_step = side * (delta_phi / nsegments);
for (j = 0; j <= nsegments; j++) {
elliptic_transform(cos(phi1), sin(phi1), da, db, dalpha, &tx,
&ty);
Vect_append_point(nPoints, x[i] + tx, y[i] + ty, 0);
phi1 += angular_step;
}
}
if ((!looped) && (i == np - 2)) {
Vect_append_point(nPoints, mx, my, 0);
}
}
if (looped) {
Vect_append_point(nPoints, nPoints->x[0], nPoints->y[0], nPoints->z[0]);
}
Vect_line_prune(nPoints);
if (looped) {
Vect_line_delete_point(Points, Points->n_points - 1);
}
}
/* input line must be looped */
static void convolution_line(struct line_pnts *Points, double da, double db,
double dalpha, int side, int round, int caps,
double tol, struct line_pnts *nPoints)
{
int i, j, res, np;
double *x, *y;
double tx, ty, vx, vy, wx, wy, nx, ny, mx, my, rx, ry;
double vx1, vy1, wx1, wy1;
double a0, b0, c0, a1, b1, c1;
double phi1, phi2, delta_phi;
double nsegments, angular_tol, angular_step;
double angle0, angle1;
int inner_corner, turns360;
G_debug(3, "convolution_line() side = %d", side);
np = Points->n_points;
x = Points->x;
y = Points->y;
if ((np == 0) || (np == 1))
return;
if ((x[0] != x[np - 1]) || (y[0] != y[np - 1])) {
G_fatal_error(_("Line is not looped"));
return;
}
Vect_reset_line(nPoints);
if ((da == 0) || (db == 0)) {
Vect_copy_xyz_to_pnts(nPoints, x, y, NULL, np);
return;
}
side = (side >= 0) ? (1) : (-1); /* normalize variable */
dalpha *= PI / 180; /* convert dalpha from degrees to radians */
angular_tol = angular_tolerance(tol, da, db);
i = np - 2;
norm_vector(x[i], y[i], x[i + 1], y[i + 1], &tx, &ty);
elliptic_tangent(side * tx, side * ty, da, db, dalpha, &vx, &vy);
angle1 = atan2(ty, tx);
nx = x[i] + vx;
ny = y[i] + vy;
mx = x[i + 1] + vx;
my = y[i + 1] + vy;
if (!round)
line_coefficients(nx, ny, mx, my, &a1, &b1, &c1);
for (i = 0; i <= np - 2; i++) {
G_debug(4, "point %d, segment %d-%d", i, i, i + 1);
/* save the old values */
if (!round) {
a0 = a1;
b0 = b1;
c0 = c1;
}
wx = vx;
wy = vy;
angle0 = angle1;
norm_vector(x[i], y[i], x[i + 1], y[i + 1], &tx, &ty);
if ((tx == 0) && (ty == 0))
continue;
elliptic_tangent(side * tx, side * ty, da, db, dalpha, &vx, &vy);
angle1 = atan2(ty, tx);
nx = x[i] + vx;
ny = y[i] + vy;
mx = x[i + 1] + vx;
my = y[i + 1] + vy;
if (!round)
line_coefficients(nx, ny, mx, my, &a1, &b1, &c1);
delta_phi = angle1 - angle0;
if (delta_phi > PI)
delta_phi -= 2 * PI;
else if (delta_phi <= -PI)
delta_phi += 2 * PI;
/* now delta_phi is in [-pi;pi] */
turns360 = (fabs(fabs(delta_phi) - PI) < 1e-15);
inner_corner = (side * delta_phi <= 0) && (!turns360);
/* if <line turns 360> and (<caps> and <not round>) */
if (turns360 && caps && (!round)) {
norm_vector(0, 0, vx, vy, &tx, &ty);
elliptic_tangent(side * tx, side * ty, da, db, dalpha, &tx, &ty);
Vect_append_point(nPoints, x[i] + wx + tx, y[i] + wy + ty, 0);
G_debug(4, " append point (c) x=%.16f y=%.16f", x[i] + wx + tx,
y[i] + wy + ty);
Vect_append_point(nPoints, nx + tx, ny + ty,
0); /* nx == x[i] + vx, ny == y[i] + vy */
G_debug(4, " append point (c) x=%.16f y=%.16f", nx + tx, ny + ty);
}
if ((!turns360) && (!round) && (!inner_corner)) {
res = line_intersection(a0, b0, c0, a1, b1, c1, &rx, &ry);
if (res == 1) {
Vect_append_point(nPoints, rx, ry, 0);
G_debug(4, " append point (o) x=%.16f y=%.16f", rx, ry);
}
else if (res == 2) {
/* no need to append point in this case */
}
else
G_fatal_error(
_("Unexpected result of line_intersection() res = %d"),
res);
}
if (round && (!inner_corner) && (!turns360 || caps)) {
/* we should draw elliptical arc for outside corner */
/* inverse transforms */
elliptic_transform(wx, wy, 1 / da, 1 / db, dalpha, &wx1, &wy1);
elliptic_transform(vx, vy, 1 / da, 1 / db, dalpha, &vx1, &vy1);
phi1 = atan2(wy1, wx1);
phi2 = atan2(vy1, vx1);
delta_phi = side * (phi2 - phi1);
/* make delta_phi in [0, 2pi] */
if (delta_phi < 0)
delta_phi += 2 * PI;
nsegments = (int)(delta_phi / angular_tol) + 1;
angular_step = side * (delta_phi / nsegments);
phi1 += angular_step;
for (j = 1; j <= nsegments - 1; j++) {
elliptic_transform(cos(phi1), sin(phi1), da, db, dalpha, &tx,
&ty);
Vect_append_point(nPoints, x[i] + tx, y[i] + ty, 0);
G_debug(4, " append point (r) x=%.16f y=%.16f", x[i] + tx,
y[i] + ty);
phi1 += angular_step;
}
}
Vect_append_point(nPoints, nx, ny, 0);
G_debug(4, " append point (s) x=%.16f y=%.16f", nx, ny);
Vect_append_point(nPoints, mx, my, 0);
G_debug(4, " append point (s) x=%.16f y=%.16f", mx, my);
}
/* close the output line */
Vect_append_point(nPoints, nPoints->x[0], nPoints->y[0], nPoints->z[0]);
Vect_line_prune(nPoints);
}
/*
* side: side >= 0 - extracts contour on right side of edge, side < 0 - extracts
* contour on left side of edge if the extracted contour is the outer contour,
* it is returned in ccw order else if it is inner contour, it is returned in cw
* order
*/
static void extract_contour(struct planar_graph *pg, struct pg_edge *first,
int side, int winding, int stop_at_line_end,
struct line_pnts *nPoints)
{
int j;
int v; /* current vertex number */
int v0;
int eside; /* side of the current edge */
double eangle; /* current edge angle with Ox (according to the current
direction) */
struct pg_vertex *vert; /* current vertex */
struct pg_vertex *vert0; /* last vertex */
struct pg_edge *edge; /* current edge; must be edge of vert */
/* int cs; */ /* on which side are we turning along the contour */
/* we will always turn right and don't need that one */
double opt_angle, tangle;
int opt_j, opt_side, opt_flag;
G_debug(3, "extract_contour(): v1=%d, v2=%d, side=%d, stop_at_line_end=%d",
first->v1, first->v2, side, stop_at_line_end);
Vect_reset_line(nPoints);
edge = first;
if (side >= 0) {
eside = 1;
v0 = edge->v1;
v = edge->v2;
}
else {
eside = -1;
v0 = edge->v2;
v = edge->v1;
}
vert0 = &(pg->v[v0]);
vert = &(pg->v[v]);
eangle = atan2(vert->y - vert0->y, vert->x - vert0->x);
while (1) {
Vect_append_point(nPoints, vert0->x, vert0->y, 0);
G_debug(4, "ec: v0=%d, v=%d, eside=%d, edge->v1=%d, edge->v2=%d", v0, v,
eside, edge->v1, edge->v2);
G_debug(4, "ec: append point x=%.18f y=%.18f", vert0->x, vert0->y);
/* mark current edge as visited on the appropriate side */
if (eside == 1) {
edge->visited_right = 1;
edge->winding_right = winding;
}
else {
edge->visited_left = 1;
edge->winding_left = winding;
}
opt_flag = 1;
for (j = 0; j < vert->ecount; j++) {
/* exclude current edge */
if (vert->edges[j] != edge) {
tangle = vert->angles[j] - eangle;
if (tangle < -PI)
tangle += 2 * PI;
else if (tangle > PI)
tangle -= 2 * PI;
/* now tangle is in (-PI, PI) */
if (opt_flag || (tangle < opt_angle)) {
opt_j = j;
opt_side = (vert->edges[j]->v1 == v) ? (1) : (-1);
opt_angle = tangle;
opt_flag = 0;
}
}
}
/*
G_debug(4, "ec: opt: side=%d opt_flag=%d opt_angle=%.18f opt_j=%d
opt_step=%d", side, opt_flag, opt_angle, opt_j, opt_step);
*/
/* if line end is reached (no other edges at curr vertex) */
if (opt_flag) {
if (stop_at_line_end) {
G_debug(3, " end has been reached, will stop here");
break;
}
else {
opt_j = 0; /* the only edge of vert is vert->edges[0] */
opt_side =
-eside; /* go to the other side of the current edge */
G_debug(3, " end has been reached, turning around");
}
}
/* break condition */
if ((vert->edges[opt_j] == first) && (opt_side == side))
break;
if (opt_side == 1) {
if (vert->edges[opt_j]->visited_right) {
G_warning(_("Next edge was visited (right) but it is not the "
"first one !!! breaking loop"));
G_debug(4,
"ec: v0=%d, v=%d, eside=%d, edge->v1=%d, edge->v2=%d",
v, (edge->v1 == v) ? (edge->v2) : (edge->v1), opt_side,
vert->edges[opt_j]->v1, vert->edges[opt_j]->v2);
break;
}
}
else {
if (vert->edges[opt_j]->visited_left) {
G_warning(_("Next edge was visited (left) but it is not the "
"first one !!! breaking loop"));
G_debug(4,
"ec: v0=%d, v=%d, eside=%d, edge->v1=%d, edge->v2=%d",
v, (edge->v1 == v) ? (edge->v2) : (edge->v1), opt_side,
vert->edges[opt_j]->v1, vert->edges[opt_j]->v2);
break;
}
}
edge = vert->edges[opt_j];
eside = opt_side;
v0 = v;
v = (edge->v1 == v) ? (edge->v2) : (edge->v1);
vert0 = vert;
vert = &(pg->v[v]);
eangle = vert0->angles[opt_j];
}
Vect_append_point(nPoints, vert->x, vert->y, 0);
Vect_line_prune(nPoints);
G_debug(4, "ec: append point x=%.18f y=%.18f", vert->x, vert->y);
return;
}
/*
* This function extracts the outer contour of a (self crossing) line.
* It can generate left/right contour if none of the line ends are in a loop.
* If one or both of them is in a loop, then there's only one contour
*
* side: side > 0 - right contour, side < 0 - left contour, side = 0 - outer
* contour if side != 0 and there's only one contour, the function returns it
*
* TODO: Implement side != 0 feature;
*/
static void extract_outer_contour(struct planar_graph *pg, int side,
struct line_pnts *nPoints)
{
int i;
int flag;
int v;
struct pg_vertex *vert;
struct pg_edge *edge;
double min_x, min_angle;
G_debug(3, "extract_outer_contour()");
if (side != 0) {
G_fatal_error(_("side != 0 feature not implemented"));
return;
}
/* find a line segment which is on the outer contour */
flag = 1;
for (i = 0; i < pg->vcount; i++) {
if (flag || (pg->v[i].x < min_x)) {
v = i;
min_x = pg->v[i].x;
flag = 0;
}
}
vert = &(pg->v[v]);
flag = 1;
for (i = 0; i < vert->ecount; i++) {
if (flag || (vert->angles[i] < min_angle)) {
edge = vert->edges[i];
min_angle = vert->angles[i];
flag = 0;
}
}
/* the winding on the outer contour is 0 */
extract_contour(pg, edge, (edge->v1 == v) ? RIGHT_SIDE : LEFT_SIDE, 0, 0,
nPoints);
return;
}
/*
* Extracts contours which are not visited.
* IMPORTANT: the outer contour must be visited (you should call
* extract_outer_contour() to do that), so that extract_inner_contour() doesn't
* return it
*
* returns: 0 when there are no more inner contours; otherwise, 1
*/
static int extract_inner_contour(struct planar_graph *pg, int *winding,
struct line_pnts *nPoints)
{
int i, w;
struct pg_edge *edge;
G_debug(3, "extract_inner_contour()");
for (i = 0; i < pg->ecount; i++) {
edge = &(pg->e[i]);
if (edge->visited_left) {
if (!(pg->e[i].visited_right)) {
w = edge->winding_left - 1;
extract_contour(pg, &(pg->e[i]), RIGHT_SIDE, w, 0, nPoints);
*winding = w;
return 1;
}
}
else {
if (pg->e[i].visited_right) {
w = edge->winding_right + 1;
extract_contour(pg, &(pg->e[i]), LEFT_SIDE, w, 0, nPoints);
*winding = w;
return 1;
}
}
}
return 0;
}
/* point_in_buf - test if point px,py is in d buffer of Points
** dalpha is in degrees
** returns: 1 in buffer
** 0 not in buffer
*/
static int point_in_buf(struct line_pnts *Points, double px, double py,
double da, double db, double dalpha)
{
int i, np;
double cx, cy;
double delta, delta_k, k;
double vx, vy, wx, wy, mx, my, nx, ny;
double len, tx, ty, d, da2;
G_debug(3, "point_in_buf()");
dalpha *= PI / 180; /* convert dalpha from degrees to radians */
np = Points->n_points;
da2 = da * da;
for (i = 0; i < np - 1; i++) {
vx = Points->x[i];
vy = Points->y[i];
wx = Points->x[i + 1];
wy = Points->y[i + 1];
if (da != db) {
mx = wx - vx;
my = wy - vy;
len = LENGTH(mx, my);
elliptic_tangent(mx / len, my / len, da, db, dalpha, &cx, &cy);
delta = mx * cy - my * cx;
delta_k = (px - vx) * cy - (py - vy) * cx;
k = delta_k / delta;
/* G_debug(4, "k = %g, k1 = %g", k, (mx * (px - vx) + my
* * (py - vy)) / (mx * mx + my * my)); */
if (k <= 0) {
nx = vx;
ny = vy;
}
else if (k >= 1) {
nx = wx;
ny = wy;
}
else {
nx = vx + k * mx;
ny = vy + k * my;
}
/* inverse transform */
elliptic_transform(px - nx, py - ny, 1 / da, 1 / db, dalpha, &tx,
&ty);
d = dig_distance2_point_to_line(nx + tx, ny + ty, 0, vx, vy, 0, wx,
wy, 0, 0, NULL, NULL, NULL, NULL,
NULL);
/* G_debug(4, "sqrt(d)*da = %g, len' = %g, olen = %g",
* sqrt(d)*da, da*LENGTH(tx,ty), LENGTH((px-nx),(py-ny))); */
if (d <= 1) {
/* G_debug(1, "d=%g", d); */
return 1;
}
}
else {
d = dig_distance2_point_to_line(px, py, 0, vx, vy, 0, wx, wy, 0, 0,
NULL, NULL, NULL, NULL, NULL);
/* G_debug(4, "sqrt(d) = %g", sqrt(d)); */
if (d <= da2) {
return 1;
}
}
}
return 0;
}
/* returns 0 for ccw, non-zero for cw
*/
static int get_polygon_orientation(const double *x, const double *y, int n)
{
double x1, y1, x2, y2;
double area;
x2 = x[n - 1];
y2 = y[n - 1];
area = 0;
while (--n >= 0) {
x1 = x2;
y1 = y2;
x2 = *x++;
y2 = *y++;
area += (y2 + y1) * (x2 - x1);
}
return (area > 0);
}
/* internal */
static void add_line_to_array(struct line_pnts *Points,
struct line_pnts ***arrPoints, int *count,
int *allocated, int more)
{
if (*allocated == *count) {
*allocated += more;
*arrPoints =
G_realloc(*arrPoints, (*allocated) * sizeof(struct line_pnts *));
}
(*arrPoints)[*count] = Points;
(*count)++;
return;
}
static void destroy_lines_array(struct line_pnts **arr, int count)
{
int i;
for (i = 0; i < count; i++)
Vect_destroy_line_struct(arr[i]);
G_free(arr);
}
/* area_outer and area_isles[i] must be closed non self-intersecting lines
side: 0 - auto, 1 - right, -1 left
*/
static void buffer_lines(struct line_pnts *area_outer,
struct line_pnts **area_isles, int isles_count,
int side, double da, double db, double dalpha,
int round, int caps, double tol,
struct line_pnts **oPoints,
struct line_pnts ***iPoints, int *inner_count)
{
struct planar_graph *pg2;
struct line_pnts *sPoints, *cPoints;
struct line_pnts **arrPoints;
int i, count = 0;
int res, winding;
int auto_side;
int more = 8;
int allocated = 0;
double px, py;
G_debug(3, "buffer_lines()");
auto_side = (side == 0);
/* initializations */
sPoints = Vect_new_line_struct();
cPoints = Vect_new_line_struct();
arrPoints = NULL;
/* outer contour */
G_debug(3, " processing outer contour");
*oPoints = Vect_new_line_struct();
if (auto_side)
side = get_polygon_orientation(area_outer->x, area_outer->y,
area_outer->n_points - 1)
? LEFT_SIDE
: RIGHT_SIDE;
convolution_line(area_outer, da, db, dalpha, side, round, caps, tol,
sPoints);
pg2 = pg_create(sPoints);
extract_outer_contour(pg2, 0, *oPoints);
res = extract_inner_contour(pg2, &winding, cPoints);
while (res != 0) {
if (winding == 0) {
int check_poly = 1;
double area_size;
dig_find_area_poly(cPoints, &area_size);
if (area_size == 0) {
G_warning(_("zero area size"));
check_poly = 0;
}
if (cPoints->x[0] != cPoints->x[cPoints->n_points - 1] ||
cPoints->y[0] != cPoints->y[cPoints->n_points - 1]) {
G_warning(_("Line was not closed"));
check_poly = 0;
}
if (check_poly &&
!Vect_point_in_poly(cPoints->x[0], cPoints->y[0], area_outer)) {
if (Vect_get_point_in_poly(cPoints, &px, &py) == 0) {
if (!point_in_buf(area_outer, px, py, da, db, dalpha)) {
add_line_to_array(cPoints, &arrPoints, &count,
&allocated, more);
cPoints = Vect_new_line_struct();
}
}
else {
G_warning(_("Vect_get_point_in_poly() failed"));
}
}
}
res = extract_inner_contour(pg2, &winding, cPoints);
}
pg_destroy_struct(pg2);
/* inner contours */
G_debug(3, " processing inner contours");
for (i = 0; i < isles_count; i++) {
if (auto_side)
side = get_polygon_orientation(area_isles[i]->x, area_isles[i]->y,
area_isles[i]->n_points - 1)
? RIGHT_SIDE
: LEFT_SIDE;
convolution_line(area_isles[i], da, db, dalpha, side, round, caps, tol,
sPoints);
pg2 = pg_create(sPoints);
extract_outer_contour(pg2, 0, cPoints);
res = extract_inner_contour(pg2, &winding, cPoints);
while (res != 0) {
if (winding == -1) {
int check_poly = 1;
double area_size;
dig_find_area_poly(cPoints, &area_size);
if (area_size == 0) {
G_warning(_("zero area size"));
check_poly = 0;
}
if (cPoints->x[0] != cPoints->x[cPoints->n_points - 1] ||
cPoints->y[0] != cPoints->y[cPoints->n_points - 1]) {
G_warning(_("Line was not closed"));
check_poly = 0;
}
/* we need to check if the area is in the buffer.
I've simplfied convolution_line(), so that it runs faster,
however that leads to occasional problems */
if (check_poly &&
Vect_point_in_poly(cPoints->x[0], cPoints->y[0],
area_isles[i])) {
if (Vect_get_point_in_poly(cPoints, &px, &py) == 0) {
if (!point_in_buf(area_isles[i], px, py, da, db,
dalpha)) {
add_line_to_array(cPoints, &arrPoints, &count,
&allocated, more);
cPoints = Vect_new_line_struct();
}
}
else {
G_warning(_("Vect_get_point_in_poly() failed"));
}
}
}
res = extract_inner_contour(pg2, &winding, cPoints);
}
pg_destroy_struct(pg2);
}
arrPoints = G_realloc(arrPoints, count * sizeof(struct line_pnts *));
*inner_count = count;
*iPoints = arrPoints;
Vect_destroy_line_struct(sPoints);
Vect_destroy_line_struct(cPoints);
G_debug(3, "buffer_lines() ... done");
return;
}
/*!
\brief Creates buffer around line.
See also Vect_line_buffer().
Shape of buffer endings is managed by two parameters - round and cap.
Setting round=1, cap=1 gives "classical" buffer, while
round=0, cap=1 gives square end, but cap=0 – butt.
See v.buffer manual or SVG stroke-linecap for examples.
To get "classical" buffer, set db equal to da, and dalpha to 0.
\param Points input line geometry
\param da distance along major axis
\param db distance along minor axis
\param dalpha angle between 0x and major axis
\param round make corners round (0 - square, not 0 - round)
\param caps add caps at line ends (0 - butt, not 0 - caps)
\param tol maximum distance between theoretical arc and output segments
\param[out] oPoints output polygon outer border (ccw order)
\param[out] iPoints array of output polygon's holes (cw order)
\param[out] inner_count number of holes
*/
void Vect_line_buffer2(const struct line_pnts *Points, double da, double db,
double dalpha, int round, int caps, double tol,
struct line_pnts **oPoints, struct line_pnts ***iPoints,
int *inner_count)
{
struct planar_graph *pg;
struct line_pnts *tPoints, *outer;
struct line_pnts **isles;
int isles_count = 0;
int res, winding;
int more = 8;
int isles_allocated = 0;
G_debug(2, "Vect_line_buffer()");
Vect_line_prune((struct line_pnts *)Points);
if (Points->n_points == 1) {
Vect_point_buffer2(Points->x[0], Points->y[0], da, db, dalpha, round,
tol, oPoints);
return;
}
/* initializations */
tPoints = Vect_new_line_struct();
isles = NULL;
pg = pg_create(Points);
/* outer contour */
outer = Vect_new_line_struct();
extract_outer_contour(pg, 0, outer);
/* inner contours */
res = extract_inner_contour(pg, &winding, tPoints);
while (res != 0) {
add_line_to_array(tPoints, &isles, &isles_count, &isles_allocated,
more);
tPoints = Vect_new_line_struct();
res = extract_inner_contour(pg, &winding, tPoints);
}
buffer_lines(outer, isles, isles_count, RIGHT_SIDE, da, db, dalpha, round,
caps, tol, oPoints, iPoints, inner_count);
Vect_destroy_line_struct(tPoints);
Vect_destroy_line_struct(outer);
destroy_lines_array(isles, isles_count);
pg_destroy_struct(pg);
}
/*!
\brief Creates buffer around area.
\param Map vector map
\param area area id
\param da distance along major axis
\param db distance along minor axis
\param dalpha angle between 0x and major axis
\param round make corners round
\param caps add caps at line ends
\param tol maximum distance between theoretical arc and output segments
\param[out] oPoints output polygon outer border (ccw order)
\param[out] inner_count number of holes
\param[out] iPoints array of output polygon's holes (cw order)
*/
void Vect_area_buffer2(struct Map_info *Map, int area, double da, double db,
double dalpha, int round, int caps, double tol,
struct line_pnts **oPoints, struct line_pnts ***iPoints,
int *inner_count)
{
struct line_pnts *tPoints, *outer;
struct line_pnts **isles;
int isles_count = 0, n_isles;
int i, isle;
int more = 8;
int isles_allocated = 0;
G_debug(2, "Vect_area_buffer()");
/* initializations */
tPoints = Vect_new_line_struct();
n_isles = Vect_get_area_num_isles(Map, area);
isles_allocated = n_isles;
isles = G_malloc(isles_allocated * sizeof(struct line_pnts *));
/* outer contour */
outer = Vect_new_line_struct();
Vect_get_area_points(Map, area, outer);
/* does not work with zero length line segments */
Vect_line_prune(outer);
/* inner contours */
for (i = 0; i < n_isles; i++) {
isle = Vect_get_area_isle(Map, area, i);
Vect_get_isle_points(Map, isle, tPoints);
/* Check if the isle is big enough */
/*
if (Vect_line_length(tPoints) < 2*PI*max)
continue;
*/
/* does not work with zero length line segments */
Vect_line_prune(tPoints);
add_line_to_array(tPoints, &isles, &isles_count, &isles_allocated,
more);
tPoints = Vect_new_line_struct();
}
buffer_lines(outer, isles, isles_count, 0, da, db, dalpha, round, caps, tol,
oPoints, iPoints, inner_count);
Vect_destroy_line_struct(tPoints);
Vect_destroy_line_struct(outer);
destroy_lines_array(isles, isles_count);
return;
}
/*!
\brief Creates buffer around the point (px, py).
\param px input point x-coordinate
\param py input point y-coordinate
\param da distance along major axis
\param db distance along minor axis
\param dalpha angle between 0x and major axis
\param round make corners round
\param tol maximum distance between theoretical arc and output segments
\param[out] oPoints output polygon outer border (ccw order)
\note Currently only handles buffers with rounded corners (round = 1)
*/
void Vect_point_buffer2(double px, double py, double da, double db,
double dalpha, int round, double tol,
struct line_pnts **oPoints)
{
double tx, ty;
double angular_tol, angular_step, phi1;
int j, nsegments;
G_debug(2, "%s()", __func__);
*oPoints = Vect_new_line_struct();
dalpha *= PI / 180; /* convert dalpha from degrees to radians */
if (round) {
angular_tol = angular_tolerance(tol, da, db);
nsegments = (int)(2 * PI / angular_tol) + 1;
angular_step = 2 * PI / nsegments;
phi1 = 0;
for (j = 0; j < nsegments; j++) {
elliptic_transform(cos(phi1), sin(phi1), da, db, dalpha, &tx, &ty);
Vect_append_point(*oPoints, px + tx, py + ty, 0);
phi1 += angular_step;
}
}
else {
}
/* close the output line */
Vect_append_point(*oPoints, (*oPoints)->x[0], (*oPoints)->y[0],
(*oPoints)->z[0]);
return;
}
/*
\brief Create parallel line
See also Vect_line_parallel().
\param InPoints input line geometry
\param da distance along major axis
\param da distance along minor axis
\param dalpha angle between 0x and major axis
\param round make corners round
\param tol maximum distance between theoretical arc and output segments
\param[out] OutPoints output line
*/
void Vect_line_parallel2(struct line_pnts *InPoints, double da, double db,
double dalpha, int side, int round, double tol,
struct line_pnts *OutPoints)
{
G_debug(2,
"Vect_line_parallel(): npoints = %d, da = %f, "
"db = %f, dalpha = %f, side = %d, round_corners = %d, tol = %f",
InPoints->n_points, da, db, dalpha, side, round, tol);
parallel_line(InPoints, da, db, dalpha, side, round, 1, NON_LOOPED_LINE,
tol, OutPoints);
/* if (!loops)
clean_parallel(OutPoints, InPoints, distance, rm_end);
*/
return;
}
|