1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
/*!
\file vector/neta/components.c
\brief Network Analysis library - graph components
Computes strongly and weakly connected components.
(C) 2009-2010 by Daniel Bundala, and the GRASS Development Team
This program is free software under the GNU General Public License
(>=v2). Read the file COPYING that comes with GRASS for details.
\author Daniel Bundala (Google Summer of Code 2009)
\author Markus Metz
*/
/* example:
*
* X -->-- X ---- X --<-- X ---- X
* N1 N2 N3 N4 N5
*
* -->--, --<-- one-way
* ---- both ways
*
* weakly connected:
* all 5 nodes, even though there is no direct path from N1 to N4, 5
* but N1 connects to N2, 3, and N4, 5 also connect to N2, 3
*
* strongly connected:
* no path from N2 to N1, no path from N3 to N4
* component 1: N1
* component 2: N2, 3
* Component3: N4, 5
*/
#include <stdio.h>
#include <stdlib.h>
#include <grass/gis.h>
#include <grass/vector.h>
#include <grass/glocale.h>
#include <grass/dgl/graph.h>
/*!
\brief Computes weakly connected components
\param graph input graph
\param[out] component array of component ids
\return number of components
\return -1 on failure
*/
int NetA_weakly_connected_components(dglGraph_s *graph, int *component)
{
int nnodes, i;
dglInt32_t *stack;
int stack_size, components;
dglInt32_t *cur_node;
dglNodeTraverser_s nt;
int have_node_costs;
dglInt32_t ncost;
if (graph->Version < 2) {
G_warning("Directed graph must be version 2 or 3 for "
"NetA_weakly_connected_components()");
return -1;
}
components = 0;
nnodes = dglGet_NodeCount(graph);
stack = (dglInt32_t *)G_calloc(nnodes + 1, sizeof(dglInt32_t));
if (!stack) {
G_fatal_error(_("Out of memory"));
return -1;
}
for (i = 1; i <= nnodes; i++)
component[i] = 0;
ncost = 0;
have_node_costs = dglGet_NodeAttrSize(graph);
dglNode_T_Initialize(&nt, graph);
for (cur_node = dglNode_T_First(&nt); cur_node;
cur_node = dglNode_T_Next(&nt)) {
dglInt32_t cur_node_id = dglNodeGet_Id(graph, cur_node);
if (!component[cur_node_id]) {
stack[0] = cur_node_id;
stack_size = 1;
component[cur_node_id] = ++components;
while (stack_size) {
dglInt32_t *node, *edgeset, *edge;
dglEdgesetTraverser_s et;
node = dglGetNode(graph, stack[--stack_size]);
edgeset = dglNodeGet_OutEdgeset(graph, node);
dglEdgeset_T_Initialize(&et, graph, edgeset);
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t to;
to = dglNodeGet_Id(graph, dglEdgeGet_Tail(graph, edge));
if (!component[to]) {
component[to] = components;
/* do not go through closed nodes */
if (have_node_costs) {
memcpy(&ncost,
dglNodeGet_Attr(
graph, dglEdgeGet_Tail(graph, edge)),
sizeof(ncost));
}
if (ncost >= 0)
stack[stack_size++] = to;
}
}
dglEdgeset_T_Release(&et);
edgeset = dglNodeGet_InEdgeset(graph, node);
dglEdgeset_T_Initialize(&et, graph, edgeset);
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t to;
to = dglNodeGet_Id(graph, dglEdgeGet_Head(graph, edge));
if (!component[to]) {
component[to] = components;
/* do not go through closed nodes */
if (have_node_costs) {
memcpy(&ncost,
dglNodeGet_Attr(
graph, dglEdgeGet_Tail(graph, edge)),
sizeof(ncost));
}
if (ncost >= 0)
stack[stack_size++] = to;
}
}
dglEdgeset_T_Release(&et);
}
}
}
dglNode_T_Release(&nt);
G_free(stack);
return components;
}
/*!
\brief Computes strongly connected components with Kosaraju's
two-pass algorithm
\param graph input graph
\param[out] component array of component ids
\return number of components
\return -1 on failure
*/
int NetA_strongly_connected_components(dglGraph_s *graph, int *component)
{
int nnodes, i;
dglInt32_t *stack, *order;
int *processed;
int stack_size, order_size, components;
dglInt32_t *cur_node;
dglNodeTraverser_s nt;
int have_node_costs;
dglInt32_t ncost;
if (graph->Version < 2) {
G_warning("Directed graph must be version 2 or 3 for "
"NetA_strongly_connected_components()");
return -1;
}
components = 0;
nnodes = dglGet_NodeCount(graph);
stack = (dglInt32_t *)G_calloc(nnodes + 1, sizeof(dglInt32_t));
order = (dglInt32_t *)G_calloc(nnodes + 1, sizeof(dglInt32_t));
processed = (int *)G_calloc(nnodes + 1, sizeof(int));
if (!stack || !order || !processed) {
G_fatal_error(_("Out of memory"));
return -1;
}
for (i = 1; i <= nnodes; i++) {
component[i] = 0;
}
ncost = 0;
have_node_costs = dglGet_NodeAttrSize(graph);
order_size = 0;
dglNode_T_Initialize(&nt, graph);
for (cur_node = dglNode_T_First(&nt); cur_node;
cur_node = dglNode_T_Next(&nt)) {
dglInt32_t cur_node_id = dglNodeGet_Id(graph, cur_node);
if (!component[cur_node_id]) {
component[cur_node_id] = --components;
stack[0] = cur_node_id;
stack_size = 1;
while (stack_size) {
dglInt32_t *node, *edgeset, *edge;
dglEdgesetTraverser_s et;
dglInt32_t node_id = stack[stack_size - 1];
if (processed[node_id]) {
stack_size--;
order[order_size++] = node_id;
continue;
}
processed[node_id] = 1;
node = dglGetNode(graph, node_id);
edgeset = dglNodeGet_OutEdgeset(graph, node);
dglEdgeset_T_Initialize(&et, graph, edgeset);
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t to;
to = dglNodeGet_Id(graph, dglEdgeGet_Tail(graph, edge));
if (!component[to]) {
component[to] = components;
/* do not go through closed nodes */
if (have_node_costs) {
memcpy(&ncost,
dglNodeGet_Attr(
graph, dglEdgeGet_Tail(graph, edge)),
sizeof(ncost));
}
if (ncost < 0)
processed[to] = 1;
stack[stack_size++] = to;
}
}
dglEdgeset_T_Release(&et);
}
}
}
dglNode_T_Release(&nt);
components = 0;
dglNode_T_Initialize(&nt, graph);
while (order_size) {
dglInt32_t cur_node_id = order[--order_size];
int cur_comp = component[cur_node_id];
if (cur_comp < 1) {
component[cur_node_id] = ++components;
stack[0] = cur_node_id;
stack_size = 1;
while (stack_size) {
dglInt32_t *node, *edgeset, *edge;
dglEdgesetTraverser_s et;
dglInt32_t node_id = stack[--stack_size];
node = dglGetNode(graph, node_id);
edgeset = dglNodeGet_InEdgeset(graph, node);
dglEdgeset_T_Initialize(&et, graph, edgeset);
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t to;
to = dglNodeGet_Id(graph, dglEdgeGet_Head(graph, edge));
if (component[to] == cur_comp) {
component[to] = components;
/* do not go through closed nodes */
if (have_node_costs) {
memcpy(&ncost,
dglNodeGet_Attr(
graph, dglEdgeGet_Head(graph, edge)),
sizeof(ncost));
}
if (ncost >= 0)
stack[stack_size++] = to;
}
}
dglEdgeset_T_Release(&et);
}
}
}
dglNode_T_Release(&nt);
G_free(stack);
G_free(order);
G_free(processed);
return components;
}
|