1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
/*!
\file vector/neta/flow.c
\brief Network Analysis library - flow in graph
Computes the length of the shortest path between all pairs of nodes
in the network.
(C) 2009-2010 by Daniel Bundala, and the GRASS Development Team
This program is free software under the GNU General Public License
(>=v2). Read the file COPYING that comes with GRASS for details.
\author Daniel Bundala (Google Summer of Code 2009)
*/
#include <stdio.h>
#include <stdlib.h>
#include <grass/gis.h>
#include <grass/vector.h>
#include <grass/glocale.h>
#include <grass/dgl/graph.h>
#include <grass/neta.h>
dglInt32_t sign(dglInt32_t x)
{
if (x >= 0)
return 1;
return -1;
}
/*!
\brief Get max flow from source to sink.
Array flow stores flow for each edge. Negative flow corresponds to a
flow in opposite direction. The function assumes that the edge costs
correspond to edge capacities.
\param graph input graph
\param source_list list of sources
\param sink_list list of sinks
\param[out] flow max flows
\return number of flows
\return -1 on failure
*/
int NetA_flow(dglGraph_s *graph, struct ilist *source_list,
struct ilist *sink_list, int *flow)
{
int nnodes, nlines, i;
dglEdgesetTraverser_s et;
dglInt32_t *queue;
dglInt32_t **prev;
char *is_source, *is_sink;
int begin, end, total_flow;
int have_node_costs;
dglInt32_t ncost;
nnodes = dglGet_NodeCount(graph);
nlines = dglGet_EdgeCount(graph) /
2; /*each line corresponds to two edges. One in each direction */
queue = (dglInt32_t *)G_calloc(nnodes + 3, sizeof(dglInt32_t));
prev = (dglInt32_t **)G_calloc(nnodes + 3, sizeof(dglInt32_t *));
is_source = (char *)G_calloc(nnodes + 3, sizeof(char));
is_sink = (char *)G_calloc(nnodes + 3, sizeof(char));
if (!queue || !prev || !is_source || !is_sink) {
G_fatal_error(_("Out of memory"));
return -1;
}
for (i = 0; i < source_list->n_values; i++)
is_source[source_list->value[i]] = 1;
for (i = 0; i < sink_list->n_values; i++)
is_sink[sink_list->value[i]] = 1;
for (i = 0; i <= nlines; i++)
flow[i] = 0;
ncost = 0;
have_node_costs = dglGet_NodeAttrSize(graph);
total_flow = 0;
while (1) {
dglInt32_t node, edge_id, min_residue;
int found = -1;
begin = end = 0;
for (i = 0; i < source_list->n_values; i++)
queue[end++] = source_list->value[i];
for (i = 1; i <= nnodes; i++) {
prev[i] = NULL;
}
while (begin != end && found == -1) {
dglInt32_t vertex = queue[begin++];
dglInt32_t *edge, *node = dglGetNode(graph, vertex);
dglEdgeset_T_Initialize(&et, graph,
dglNodeGet_OutEdgeset(graph, node));
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t cap = dglEdgeGet_Cost(graph, edge);
dglInt32_t id = dglEdgeGet_Id(graph, edge);
dglInt32_t to =
dglNodeGet_Id(graph, dglEdgeGet_Tail(graph, edge));
if (!is_source[to] && prev[to] == NULL &&
cap > sign(id) * flow[labs(id)]) {
prev[to] = edge;
if (is_sink[to]) {
found = to;
break;
}
/* do not go through closed nodes */
if (have_node_costs) {
memcpy(&ncost,
dglNodeGet_Attr(graph,
dglEdgeGet_Tail(graph, edge)),
sizeof(ncost));
}
if (ncost >= 0)
queue[end++] = to;
}
}
dglEdgeset_T_Release(&et);
}
if (found == -1)
break; /*no augmenting path */
/*find minimum residual capacity along the augmenting path */
node = found;
edge_id = dglEdgeGet_Id(graph, prev[node]);
min_residue = dglEdgeGet_Cost(graph, prev[node]) -
sign(edge_id) * flow[labs(edge_id)];
while (!is_source[node]) {
dglInt32_t residue;
edge_id = dglEdgeGet_Id(graph, prev[node]);
residue = dglEdgeGet_Cost(graph, prev[node]) -
sign(edge_id) * flow[labs(edge_id)];
if (residue < min_residue)
min_residue = residue;
node = dglNodeGet_Id(graph, dglEdgeGet_Head(graph, prev[node]));
}
total_flow += min_residue;
/*update flow along the augmenting path */
node = found;
while (!is_source[node]) {
edge_id = dglEdgeGet_Id(graph, prev[node]);
flow[labs(edge_id)] += sign(edge_id) * min_residue;
node = dglNodeGet_Id(graph, dglEdgeGet_Head(graph, prev[node]));
}
}
G_free(queue);
G_free(prev);
G_free(is_source);
G_free(is_sink);
return total_flow;
}
/*!
\brief Calculates minimum cut between source(s) and sink(s).
Flow is the array produced by NetA_flow() method when called with
source_list and sink_list as the input. The output of this and
NetA_flow() method should be the same.
\param graph input graph
\param source_list list of sources
\param sink_list list of sinks (unused)
\param flow
\param[out] cut list of edges (cut)
\return number of edges
\return -1 on failure
*/
int NetA_min_cut(dglGraph_s *graph, struct ilist *source_list,
struct ilist *sink_list UNUSED, int *flow, struct ilist *cut)
{
int nnodes, i;
dglEdgesetTraverser_s et;
dglInt32_t *queue;
char *visited;
int begin, end, total_flow;
nnodes = dglGet_NodeCount(graph);
queue = (dglInt32_t *)G_calloc(nnodes + 3, sizeof(dglInt32_t));
visited = (char *)G_calloc(nnodes + 3, sizeof(char));
if (!queue || !visited) {
G_fatal_error(_("Out of memory"));
return -1;
}
total_flow = begin = end = 0;
for (i = 1; i <= nnodes; i++)
visited[i] = 0;
for (i = 0; i < source_list->n_values; i++) {
queue[end++] = source_list->value[i];
visited[source_list->value[i]] = 1;
}
/* find vertices reachable from source(s) using only non-saturated edges */
while (begin != end) {
dglInt32_t vertex = queue[begin++];
dglInt32_t *edge, *node = dglGetNode(graph, vertex);
dglEdgeset_T_Initialize(&et, graph, dglNodeGet_OutEdgeset(graph, node));
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t cap = dglEdgeGet_Cost(graph, edge);
dglInt32_t id = dglEdgeGet_Id(graph, edge);
dglInt32_t to = dglNodeGet_Id(graph, dglEdgeGet_Tail(graph, edge));
if (!visited[to] && cap > sign(id) * flow[labs(id)]) {
visited[to] = 1;
queue[end++] = to;
}
}
dglEdgeset_T_Release(&et);
}
/*saturated edges from reachable vertices to non-reachable ones form a
* minimum cost */
Vect_reset_list(cut);
for (i = 1; i <= nnodes; i++) {
if (!visited[i])
continue;
dglInt32_t *node, *edgeset, *edge;
node = dglGetNode(graph, i);
edgeset = dglNodeGet_OutEdgeset(graph, node);
dglEdgeset_T_Initialize(&et, graph, edgeset);
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t to, edge_id;
to = dglNodeGet_Id(graph, dglEdgeGet_Tail(graph, edge));
edge_id = labs(dglEdgeGet_Id(graph, edge));
if (!visited[to] && flow[edge_id] != 0) {
Vect_list_append(cut, edge_id);
total_flow += abs(flow[labs(edge_id)]);
}
}
dglEdgeset_T_Release(&et);
}
G_free(visited);
G_free(queue);
return total_flow;
}
/*!
\brief Splits each vertex of in graph into two vertices
The method splits each vertex of in graph into two vertices: in
vertex and out vertex. Also, it adds an edge from an in vertex to
the corresponding out vertex (capacity=2) and it adds an edge from
out vertex to in vertex for each edge present in the in graph
(forward capacity=1, backward capacity=0). If the id of a vertex is
v then id of in vertex is 2*v-1 and of out vertex 2*v.
\param in from graph
\param out to graph
\param node_costs list of node costs
\return number of undirected edges in the graph
\return -1 on failure
*/
int NetA_split_vertices(dglGraph_s *in, dglGraph_s *out, int *node_costs)
{
dglInt32_t opaqueset[16] = {360000, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0};
dglNodeTraverser_s nt;
dglInt32_t edge_cnt;
dglInt32_t *cur_node;
dglInitialize(out, (dglByte_t)1, (dglInt32_t)0, (dglInt32_t)0, opaqueset);
dglNode_T_Initialize(&nt, in);
edge_cnt = 0;
dglInt32_t max_node_cost = 0;
for (cur_node = dglNode_T_First(&nt); cur_node;
cur_node = dglNode_T_Next(&nt)) {
dglInt32_t v = dglNodeGet_Id(in, cur_node);
edge_cnt++;
dglInt32_t cost = 1;
if (node_costs)
cost = node_costs[v];
/* skip closed nodes */
if (cost < 0)
continue;
if (cost > max_node_cost)
max_node_cost = cost;
dglAddEdge(out, 2 * v - 1, 2 * v, cost, edge_cnt);
dglAddEdge(out, 2 * v, 2 * v - 1, (dglInt32_t)0, -edge_cnt);
}
dglNode_T_Release(&nt);
dglNode_T_Initialize(&nt, in);
for (cur_node = dglNode_T_First(&nt); cur_node;
cur_node = dglNode_T_Next(&nt)) {
dglEdgesetTraverser_s et;
dglInt32_t *edge;
dglInt32_t v = dglNodeGet_Id(in, cur_node);
dglInt32_t cost = 1;
if (node_costs)
cost = node_costs[v];
/* skip closed nodes */
if (cost < 0)
continue;
dglEdgeset_T_Initialize(&et, in, dglNodeGet_OutEdgeset(in, cur_node));
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t to;
to = dglNodeGet_Id(in, dglEdgeGet_Tail(in, edge));
edge_cnt++;
dglAddEdge(out, 2 * v, 2 * to - 1, max_node_cost + 1, edge_cnt);
dglAddEdge(out, 2 * to - 1, 2 * v, (dglInt32_t)0, -edge_cnt);
}
dglEdgeset_T_Release(&et);
}
dglNode_T_Release(&nt);
if (dglFlatten(out) < 0)
G_fatal_error(_("GngFlatten error"));
return edge_cnt;
}
|