1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
/*!
\file vector/neta/path.c
\brief Network Analysis library - shortest path
Shortest paths from a set of nodes.
(C) 2009-2010 by Daniel Bundala, and the GRASS Development Team
This program is free software under the GNU General Public License
(>=v2). Read the file COPYING that comes with GRASS for details.
\author Daniel Bundala (Google Summer of Code 2009)
\author Markus Metz
*/
#include <stdio.h>
#include <stdlib.h>
#include <grass/gis.h>
#include <grass/vector.h>
#include <grass/glocale.h>
#include <grass/dgl/graph.h>
#include <grass/neta.h>
/*!
\brief Computes shortest paths to every node from nodes in "from".
Array "dst" contains the cost of the path or -1 if the node is not
reachable. Prev contains edges from predecessor along the shortest
path.
\param graph input graph
\param from list of 'from' positions
\param[out] dst array of costs to reach nodes
\param[out] prev array of edges from predecessor along the shortest path
\return 0 on success
\return -1 on failure
*/
int NetA_distance_from_points(dglGraph_s *graph, struct ilist *from, int *dst,
dglInt32_t **prev)
{
int i, nnodes;
dglHeap_s heap;
int have_node_costs;
dglInt32_t ncost;
nnodes = dglGet_NodeCount(graph);
dglEdgesetTraverser_s et;
/* initialize costs and edge list */
for (i = 1; i <= nnodes; i++) {
dst[i] = -1;
prev[i] = NULL;
}
ncost = 0;
have_node_costs = dglGet_NodeAttrSize(graph);
dglHeapInit(&heap);
for (i = 0; i < from->n_values; i++) {
int v = from->value[i];
if (dst[v] == 0)
continue; /* ignore duplicates */
dst[v] = 0; /* make sure all from nodes are processed first */
dglHeapData_u heap_data;
heap_data.ul = v;
dglHeapInsertMin(&heap, 0, ' ', heap_data);
}
while (1) {
dglInt32_t v, dist;
dglHeapNode_s heap_node;
dglHeapData_u heap_data;
dglInt32_t *edge;
dglInt32_t *node;
if (!dglHeapExtractMin(&heap, &heap_node))
break;
v = heap_node.value.ul;
dist = heap_node.key;
if (dst[v] < dist)
continue;
node = dglGetNode(graph, v);
if (have_node_costs && prev[v]) {
memcpy(&ncost, dglNodeGet_Attr(graph, node), sizeof(ncost));
if (ncost > 0)
dist += ncost;
/* do not go through closed nodes */
if (ncost < 0)
continue;
}
dglEdgeset_T_Initialize(&et, graph, dglNodeGet_OutEdgeset(graph, node));
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t *to = dglEdgeGet_Tail(graph, edge);
dglInt32_t to_id = dglNodeGet_Id(graph, to);
dglInt32_t d = dglEdgeGet_Cost(graph, edge);
if (dst[to_id] < 0 || dst[to_id] > dist + d) {
dst[to_id] = dist + d;
prev[to_id] = edge;
heap_data.ul = to_id;
dglHeapInsertMin(&heap, dist + d, ' ', heap_data);
}
}
dglEdgeset_T_Release(&et);
}
dglHeapFree(&heap, NULL);
return 0;
}
/*!
\brief Computes shortest paths from every node to nodes in "to".
Array "dst" contains the cost of the path or -1 if the node is not
reachable. Nxt contains edges from successor along the shortest
path. This method does reverse search starting with "to" nodes and
going backward.
\param graph input graph
\param to list of 'to' positions
\param[out] dst array of costs to reach nodes
\param[out] nxt array of edges from successor along the shortest path
\return 0 on success
\return -1 on failure
*/
int NetA_distance_to_points(dglGraph_s *graph, struct ilist *to, int *dst,
dglInt32_t **nxt)
{
int i, nnodes;
dglHeap_s heap;
dglEdgesetTraverser_s et;
int have_node_costs;
dglInt32_t ncost;
nnodes = dglGet_NodeCount(graph);
/* initialize costs and edge list */
for (i = 1; i <= nnodes; i++) {
dst[i] = -1;
nxt[i] = NULL;
}
if (graph->Version < 2) {
G_warning("Directed graph must be version 2 or 3 for "
"NetA_distance_to_points()");
return -1;
}
ncost = 0;
have_node_costs = dglGet_NodeAttrSize(graph);
dglHeapInit(&heap);
for (i = 0; i < to->n_values; i++) {
int v = to->value[i];
if (dst[v] == 0)
continue; /* ignore duplicates */
dst[v] = 0; /* make sure all to nodes are processed first */
dglHeapData_u heap_data;
heap_data.ul = v;
dglHeapInsertMin(&heap, 0, ' ', heap_data);
}
while (1) {
dglInt32_t v, dist;
dglHeapNode_s heap_node;
dglHeapData_u heap_data;
dglInt32_t *edge;
dglInt32_t *node;
if (!dglHeapExtractMin(&heap, &heap_node))
break;
v = heap_node.value.ul;
dist = heap_node.key;
if (dst[v] < dist)
continue;
node = dglGetNode(graph, v);
if (have_node_costs && nxt[v]) {
memcpy(&ncost, dglNodeGet_Attr(graph, node), sizeof(ncost));
if (ncost > 0)
dist += ncost;
/* do not go through closed nodes */
if (ncost < 0)
continue;
}
dglEdgeset_T_Initialize(&et, graph, dglNodeGet_InEdgeset(graph, node));
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t *from = dglEdgeGet_Head(graph, edge);
dglInt32_t from_id = dglNodeGet_Id(graph, from);
dglInt32_t d = dglEdgeGet_Cost(graph, edge);
if (dst[from_id] < 0 || dst[from_id] > dist + d) {
dst[from_id] = dist + d;
nxt[from_id] = edge;
heap_data.ul = from_id;
dglHeapInsertMin(&heap, dist + d, ' ', heap_data);
}
}
dglEdgeset_T_Release(&et);
}
dglHeapFree(&heap, NULL);
return 0;
}
/*!
\brief Find a path (minimum number of edges) from 'from' to 'to'
using only edges flagged as valid in 'edges'. Edge costs are not
considered. Closed nodes are not traversed.
Precisely, edge with id I is used if edges[abs(i)] == 1. List
stores the indices of lines on the path. The method returns the
number of edges or -1 if no path exists.
\param graph input graph
\param from 'from' position
\param to 'to' position
\param edges array of edges indicating whether an edge should be used
\param[out] list list of edges
\return number of edges
\return -1 on failure
*/
int NetA_find_path(dglGraph_s *graph, int from, int to, int *edges,
struct ilist *list)
{
dglInt32_t **prev, *queue;
dglEdgesetTraverser_s et;
char *vis;
int begin, end, cur, nnodes;
int have_node_costs;
dglInt32_t ncost;
nnodes = dglGet_NodeCount(graph);
prev = (dglInt32_t **)G_calloc(nnodes + 1, sizeof(dglInt32_t *));
queue = (dglInt32_t *)G_calloc(nnodes + 1, sizeof(dglInt32_t));
vis = (char *)G_calloc(nnodes + 1, sizeof(char));
if (!prev || !queue || !vis) {
G_fatal_error(_("Out of memory"));
return -1;
}
Vect_reset_list(list);
ncost = 0;
have_node_costs = dglGet_NodeAttrSize(graph);
begin = 0;
end = 1;
vis[from] = 'y';
queue[0] = from;
prev[from] = NULL;
while (begin != end) {
dglInt32_t vertex = queue[begin++];
dglInt32_t *edge = NULL, *node;
if (vertex == to)
break;
/* do not go through closed nodes */
if (have_node_costs && prev[vertex]) {
memcpy(&ncost, dglNodeGet_Attr(graph, dglEdgeGet_Tail(graph, edge)),
sizeof(ncost));
if (ncost < 0)
continue;
}
node = dglGetNode(graph, vertex);
dglEdgeset_T_Initialize(&et, graph, dglNodeGet_OutEdgeset(graph, node));
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
dglInt32_t edge_id = labs(dglEdgeGet_Id(graph, edge));
dglInt32_t node_id =
dglNodeGet_Id(graph, dglEdgeGet_Tail(graph, edge));
if (edges[edge_id] && !vis[node_id]) {
vis[node_id] = 'y';
prev[node_id] = edge;
queue[end++] = node_id;
}
}
dglEdgeset_T_Release(&et);
}
G_free(queue);
if (!vis[to]) {
G_free(prev);
G_free(vis);
return -1;
}
cur = to;
while (prev[cur] != NULL) {
Vect_list_append(list, labs(dglEdgeGet_Id(graph, prev[cur])));
cur = dglNodeGet_Id(graph, dglEdgeGet_Head(graph, prev[cur]));
}
G_free(prev);
G_free(vis);
return list->n_values;
}
|