File: rect.c

package info (click to toggle)
grass 8.4.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 277,040 kB
  • sloc: ansic: 460,798; python: 227,732; cpp: 42,026; sh: 11,262; makefile: 7,007; xml: 3,637; sql: 968; lex: 520; javascript: 484; yacc: 450; asm: 387; perl: 157; sed: 25; objc: 6; ruby: 4
file content (654 lines) | stat: -rw-r--r-- 17,823 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/****************************************************************************
 * MODULE:       R-Tree library
 *
 * AUTHOR(S):    Antonin Guttman - original code
 *               Daniel Green (green@superliminal.com) - major clean-up
 *                               and implementation of bounding spheres
 *               Markus Metz - file-based and memory-based R*-tree
 *
 * PURPOSE:      Multidimensional index
 *
 * COPYRIGHT:    (C) 2010 by the GRASS Development Team
 *
 *               This program is free software under the GNU General Public
 *               License (>=v2). Read the file COPYING that comes with GRASS
 *               for details.
 *****************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "index.h"

#include <float.h>
#include <math.h>
#include <grass/gis.h>

#define BIG_NUM         (FLT_MAX / 4.0)

#define Undefined(x, t) ((x)->boundary[0] > (x)->boundary[t->ndims_alloc])

/*!
   \brief Create a new rectangle for a given tree

   This method allocates a new rectangle and initializes
   the internal boundary coordinates based on the tree dimension.

   Hence a call to RTreeNewBoundary() is not necessary.

   \param t The pointer to a RTree struct
   \return A new allocated RTree_Rect struct
 */
struct RTree_Rect *RTreeAllocRect(struct RTree *t)
{
    struct RTree_Rect *r;

    assert(t);

    r = (struct RTree_Rect *)malloc(sizeof(struct RTree_Rect));

    assert(r);

    r->boundary = RTreeAllocBoundary(t);
    return r;
}

/*!
   \brief Delete a rectangle

   This method deletes (free) the allocated memory of a rectangle.

   \param r The pointer to the rectangle to be deleted
 */
void RTreeFreeRect(struct RTree_Rect *r)
{
    assert(r);
    RTreeFreeBoundary(r);
    free(r);
}

/*!
   \brief Allocate the boundary array of a rectangle for a given tree

   This method allocated the boundary coordinates array in
   provided rectangle. It does not release previously allocated memory.

   \param r The  pointer to rectangle to initialize the boundary coordinates.
   This is usually a rectangle that was created on the stack or
   self allocated.
   \param t The pointer to a RTree struct
 */
RectReal *RTreeAllocBoundary(struct RTree *t)
{
    RectReal *boundary = (RectReal *)malloc(t->rectsize);

    assert(boundary);

    return boundary;
}

/*!
   \brief Delete the boundary of a rectangle

   This method deletes (free) the memory of the boundary of a rectangle
   and sets the boundary pointer to NULL.

   \param r The pointer to the rectangle to delete the boundary from.
 */
void RTreeFreeBoundary(struct RTree_Rect *r)
{
    assert(r);
    if (r->boundary)
        free(r->boundary);
    r->boundary = NULL;
}

/*!
   \brief Initialize a rectangle to have all 0 coordinates.
 */
void RTreeInitRect(struct RTree_Rect *r, struct RTree *t)
{
    register int i;

    for (i = 0; i < t->ndims_alloc; i++)
        r->boundary[i] = r->boundary[i + t->ndims_alloc] = (RectReal)0;
}

/*!
   \brief Set one dimensional coordinates of a rectangle for a given tree.

   All coordinates of the rectangle will be initialized to 0 before
   the x coordinates are set.

   \param r The pointer to the rectangle
   \param t The pointer to the RTree
   \param x_min The lower x coordinate
   \param x_max The higher x coordinate
 */
void RTreeSetRect1D(struct RTree_Rect *r, struct RTree *t, double x_min,
                    double x_max)
{
    RTreeInitRect(r, t);
    r->boundary[0] = (RectReal)x_min;
    r->boundary[t->ndims_alloc] = (RectReal)x_max;
}

/*!
   \brief Set two dimensional coordinates of a rectangle for a given tree.

   All coordinates of the rectangle will be initialized to 0 before
   the x and y coordinates are set.

   \param r The pointer to the rectangle
   \param t The pointer to the RTree
   \param x_min The lower x coordinate
   \param x_max The higher x coordinate
   \param y_min The lower y coordinate
   \param y_max The higher y coordinate
 */
void RTreeSetRect2D(struct RTree_Rect *r, struct RTree *t, double x_min,
                    double x_max, double y_min, double y_max)
{
    RTreeInitRect(r, t);
    r->boundary[0] = (RectReal)x_min;
    r->boundary[t->ndims_alloc] = (RectReal)x_max;
    r->boundary[1] = (RectReal)y_min;
    r->boundary[1 + t->ndims_alloc] = (RectReal)y_max;
}

/*!
   \brief Set three dimensional coordinates of a rectangle for a given tree.

   All coordinates of the rectangle will be initialized to 0 before
   the x,y and z coordinates are set.

   \param r The pointer to the rectangle
   \param t The pointer to the RTree
   \param x_min The lower x coordinate
   \param x_max The higher x coordinate
   \param y_min The lower y coordinate
   \param y_max The higher y coordinate
   \param z_min The lower z coordinate
   \param z_max The higher z coordinate
 */
void RTreeSetRect3D(struct RTree_Rect *r, struct RTree *t, double x_min,
                    double x_max, double y_min, double y_max, double z_min,
                    double z_max)
{
    RTreeInitRect(r, t);
    r->boundary[0] = (RectReal)x_min;
    r->boundary[t->ndims_alloc] = (RectReal)x_max;
    r->boundary[1] = (RectReal)y_min;
    r->boundary[1 + t->ndims_alloc] = (RectReal)y_max;
    r->boundary[2] = (RectReal)z_min;
    r->boundary[2 + t->ndims_alloc] = (RectReal)z_max;
}

/*!
   \brief Set 4 dimensional coordinates of a rectangle for a given tree.

   All coordinates of the rectangle will be initialized to 0 before
   the x,y,z and t coordinates are set.

   \param r The pointer to the rectangle
   \param t The pointer to the RTree
   \param x_min The lower x coordinate
   \param x_max The higher x coordinate
   \param y_min The lower y coordinate
   \param y_max The higher y coordinate
   \param z_min The lower z coordinate
   \param z_max The higher z coordinate
   \param t_min The lower t coordinate
   \param t_max The higher t coordinate
 */
void RTreeSetRect4D(struct RTree_Rect *r, struct RTree *t, double x_min,
                    double x_max, double y_min, double y_max, double z_min,
                    double z_max, double t_min, double t_max)
{
    assert(t->ndims >= 4);

    RTreeInitRect(r, t);
    r->boundary[0] = (RectReal)x_min;
    r->boundary[t->ndims_alloc] = (RectReal)x_max;
    r->boundary[1] = (RectReal)y_min;
    r->boundary[1 + t->ndims_alloc] = (RectReal)y_max;
    r->boundary[2] = (RectReal)z_min;
    r->boundary[2 + t->ndims_alloc] = (RectReal)z_max;
    r->boundary[3] = (RectReal)t_min;
    r->boundary[3 + t->ndims_alloc] = (RectReal)t_max;
}

/*
   Return a rect whose first low side is higher than its opposite side -
   interpreted as an undefined rect.
 */
void RTreeNullRect(struct RTree_Rect *r, struct RTree *t)
{
    register int i;

    /* assert(r); */

    r->boundary[0] = (RectReal)1;
    r->boundary[t->nsides_alloc - 1] = (RectReal)-1;
    for (i = 1; i < t->ndims_alloc; i++)
        r->boundary[i] = r->boundary[i + t->ndims_alloc] = (RectReal)0;

    return;
}

#if 0

/*
   Fills in random coordinates in a rectangle.
   The low side is guaranteed to be less than the high side.
 */
void RTreeRandomRect(struct RTree_Rect *R)
{
    register struct RTree_Rect *r = R;
    register int i;
    register RectReal width;

    for (i = 0; i < NUMDIMS; i++) {
        /* width from 1 to 1000 / 4, more small ones
         */
        width = drand48() * (1000 / 4) + 1;

        /* sprinkle a given size evenly but so they stay in [0,100]
         */
        r->boundary[i] = drand48() * (1000 - width);    /* low side */
        r->boundary[i + NUMDIMS] = r->boundary[i] + width;      /* high side */
    }
}


/*
   Fill in the boundaries for a random search rectangle.
   Pass in a pointer to a rect that contains all the data,
   and a pointer to the rect to be filled in.
   Generated rect is centered randomly anywhere in the data area,
   and has size from 0 to the size of the data area in each dimension,
   i.e. search rect can stick out beyond data area.
 */
void RTreeSearchRect(struct RTree_Rect *Search, struct RTree_Rect *Data)
{
    register struct RTree_Rect *search = Search, *data = Data;
    register int i, j;
    register RectReal size, center;

    assert(search);
    assert(data);

    for (i = 0; i < NUMDIMS; i++) {
        j = i + NUMDIMS;        /* index for high side boundary */
        if (data->boundary[i] > -BIG_NUM && data->boundary[j] < BIG_NUM) {
            size = (drand48() * (data->boundary[j] -
                                 data->boundary[i] + 1)) / 2;
            center = data->boundary[i] + drand48() *
                (data->boundary[j] - data->boundary[i] + 1);
            search->boundary[i] = center - size / 2;
            search->boundary[j] = center + size / 2;
        }
        else {                  /* some open boundary, search entire dimension */

            search->boundary[i] = -BIG_NUM;
            search->boundary[j] = BIG_NUM;
        }
    }
}

#endif

/*
   Print out the data for a rectangle.
 */
void RTreePrintRect(struct RTree_Rect *R, int depth, struct RTree *t)
{
    register struct RTree_Rect *r = R;
    register int i;

    assert(r);

    RTreeTabIn(depth);
    fprintf(stdout, "rect:\n");
    for (i = 0; i < t->ndims_alloc; i++) {
        RTreeTabIn(depth + 1);
        fprintf(stdout, "%f\t%f\n", r->boundary[i],
                r->boundary[i + t->ndims_alloc]);
    }
}

/*
   Calculate the n-dimensional volume of a rectangle
 */
RectReal RTreeRectVolume(struct RTree_Rect *R, struct RTree *t)
{
    register struct RTree_Rect *r = R;
    register int i;
    register RectReal volume = (RectReal)1;

    /* assert(r); */

    if (Undefined(r, t))
        return (RectReal)0;

    for (i = 0; i < t->ndims; i++)
        volume *= r->boundary[i + t->ndims_alloc] - r->boundary[i];
    assert(volume >= 0.0);

    return volume;
}

/*
   Define the NUMDIMS-dimensional volume the unit sphere in that dimension into
   the symbol "UnitSphereVolume"
   Note that if the gamma function is available in the math library and if the
   compiler supports static initialization using functions, this is
   easily computed for any dimension. If not, the value can be precomputed and
   taken from a table. The following code can do it either way.
 */

#ifdef gamma

/* computes the volume of an N-dimensional sphere. */
/* derived from formule in "Regular Polytopes" by H.S.M Coxeter */
static double sphere_volume(double dimension)
{
    double log_gamma, log_volume;

    log_gamma = gamma(dimension / 2.0 + 1);
    log_volume = dimension / 2.0 * log(M_PI) - log_gamma;
    return exp(log_volume);
}

static const double UnitSphereVolume = sphere_volume(20);

#else

/* Precomputed volumes of the unit spheres for the first few dimensions */
const double UnitSphereVolumes[] = {
    0.000000, /* dimension   0 */
    2.000000, /* dimension   1 */
    3.141593, /* dimension   2 */
    4.188790, /* dimension   3 */
    4.934802, /* dimension   4 */
    5.263789, /* dimension   5 */
    5.167713, /* dimension   6 */
    4.724766, /* dimension   7 */
    4.058712, /* dimension   8 */
    3.298509, /* dimension   9 */
    2.550164, /* dimension  10 */
    1.884104, /* dimension  11 */
    1.335263, /* dimension  12 */
    0.910629, /* dimension  13 */
    0.599265, /* dimension  14 */
    0.381443, /* dimension  15 */
    0.235331, /* dimension  16 */
    0.140981, /* dimension  17 */
    0.082146, /* dimension  18 */
    0.046622, /* dimension  19 */
    0.025807, /* dimension  20 */
};

#if NUMDIMS > 20
#error "not enough precomputed sphere volumes"
#endif
#define UnitSphereVolume UnitSphereVolumes[NUMDIMS]

#endif

/*
   Calculate the n-dimensional volume of the bounding sphere of a rectangle
 */

#if 0
/*
 * A fast approximation to the volume of the bounding sphere for the
 * given Rect. By Paul B.
 */
RectReal RTreeRectSphericalVolume(struct RTree_Rect *R, struct RTree *t)
{
    register struct RTree_Rect *r = R;
    register int i;
    RectReal maxsize = (RectReal) 0, c_size;

    /* assert(r); */

    if (Undefined(r, t))
        return (RectReal) 0;

    for (i = 0; i < t->ndims; i++) {
        c_size = r->boundary[i + NUMDIMS] - r->boundary[i];
        if (c_size > maxsize)
            maxsize = c_size;
    }
    return (RectReal) (pow(maxsize / 2, NUMDIMS) *
                       UnitSphereVolumes[t->ndims]);
}
#endif

/*
 * The exact volume of the bounding sphere for the given Rect.
 */
RectReal RTreeRectSphericalVolume(struct RTree_Rect *r, struct RTree *t)
{
    int i;
    double sum_of_squares = 0, extent;

    /* assert(r); */

    if (Undefined(r, t))
        return (RectReal)0;

    for (i = 0; i < t->ndims; i++) {
        extent = (r->boundary[i + t->ndims_alloc] - r->boundary[i]);

        /* extent should be half extent : /4 */
        sum_of_squares += extent * extent / 4.;
    }

    return (RectReal)(pow(sqrt(sum_of_squares), t->ndims) *
                      UnitSphereVolumes[t->ndims]);
}

/*
   Calculate the n-dimensional surface area of a rectangle
 */
RectReal RTreeRectSurfaceArea(struct RTree_Rect *r, struct RTree *t)
{
    int i, j;
    RectReal face_area, sum = (RectReal)0;

    /*assert(r); */

    if (Undefined(r, t))
        return (RectReal)0;

    for (i = 0; i < t->ndims; i++) {
        face_area = (RectReal)1;

        for (j = 0; j < t->ndims; j++)
            /* exclude i extent from product in this dimension */
            if (i != j) {
                face_area *= (r->boundary[j + t->ndims_alloc] - r->boundary[j]);
            }
        sum += face_area;
    }
    return 2 * sum;
}

/*
   Calculate the n-dimensional margin of a rectangle
   the margin is the sum of the lengths of the edges
 */
RectReal RTreeRectMargin(struct RTree_Rect *r, struct RTree *t)
{
    int i;
    RectReal margin = 0.0;

    /* assert(r); */

    for (i = 0; i < t->ndims; i++) {
        margin += r->boundary[i + t->ndims_alloc] - r->boundary[i];
    }

    return margin;
}

/*
   Combine two rectangles, make one that includes both.
 */
void RTreeCombineRect(struct RTree_Rect *r1, struct RTree_Rect *r2,
                      struct RTree_Rect *r3, struct RTree *t)
{
    int i, j;

    /* assert(r1 && r2 && r3); */

    if (Undefined(r1, t)) {
        for (i = 0; i < t->nsides_alloc; i++)
            r3->boundary[i] = r2->boundary[i];

        return;
    }

    if (Undefined(r2, t)) {
        for (i = 0; i < t->nsides_alloc; i++)
            r3->boundary[i] = r1->boundary[i];

        return;
    }

    for (i = 0; i < t->ndims; i++) {
        r3->boundary[i] = MIN(r1->boundary[i], r2->boundary[i]);
        j = i + t->ndims_alloc;
        r3->boundary[j] = MAX(r1->boundary[j], r2->boundary[j]);
    }
    for (i = t->ndims; i < t->ndims_alloc; i++) {
        r3->boundary[i] = 0;
        j = i + t->ndims_alloc;
        r3->boundary[j] = 0;
    }
}

/*
   Expand first rectangle to cover second rectangle.
 */
int RTreeExpandRect(struct RTree_Rect *r1, struct RTree_Rect *r2,
                    struct RTree *t)
{
    int i, j, ret = 0;

    /* assert(r1 && r2); */

    if (Undefined(r2, t))
        return ret;

    for (i = 0; i < t->ndims; i++) {
        if (r1->boundary[i] > r2->boundary[i]) {
            r1->boundary[i] = r2->boundary[i];
            ret = 1;
        }
        j = i + t->ndims_alloc;
        if (r1->boundary[j] < r2->boundary[j]) {
            r1->boundary[j] = r2->boundary[j];
            ret = 1;
        }
    }

    for (i = t->ndims; i < t->ndims_alloc; i++) {
        r1->boundary[i] = 0;
        j = i + t->ndims_alloc;
        r1->boundary[j] = 0;
    }

    return ret;
}

/*
   Decide whether two rectangles are identical.
 */
int RTreeCompareRect(struct RTree_Rect *r, struct RTree_Rect *s,
                     struct RTree *t)
{
    register int i, j;

    /* assert(r && s); */

    for (i = 0; i < t->ndims; i++) {
        j = i + t->ndims_alloc; /* index for high sides */
        if (r->boundary[i] != s->boundary[i] ||
            r->boundary[j] != s->boundary[j]) {
            return 0;
        }
    }
    return 1;
}

/*
   Decide whether two rectangles overlap or touch.
 */
int RTreeOverlap(struct RTree_Rect *r, struct RTree_Rect *s, struct RTree *t)
{
    register int i, j;

    /* assert(r && s); */

    for (i = 0; i < t->ndims; i++) {
        j = i + t->ndims_alloc; /* index for high sides */
        if (r->boundary[i] > s->boundary[j] ||
            s->boundary[i] > r->boundary[j]) {
            return FALSE;
        }
    }
    return TRUE;
}

/*
   Decide whether rectangle s is contained in rectangle r.
 */
int RTreeContained(struct RTree_Rect *r, struct RTree_Rect *s, struct RTree *t)
{
    register int i, j;

    /* assert(r && s); */

    /* undefined rect is contained in any other */
    if (Undefined(r, t))
        return TRUE;

    /* no rect (except an undefined one) is contained in an undef rect */
    if (Undefined(s, t))
        return FALSE;

    for (i = 0; i < t->ndims; i++) {
        j = i + t->ndims_alloc; /* index for high sides */
        if (s->boundary[i] < r->boundary[i] || s->boundary[j] > r->boundary[j])
            return FALSE;
    }
    return TRUE;
}

/*
   Decide whether rectangle s fully contains rectangle r.
 */
int RTreeContains(struct RTree_Rect *r, struct RTree_Rect *s, struct RTree *t)
{
    register int i, j;

    /* assert(r && s); */

    /* undefined rect is contained in any other */
    if (Undefined(r, t))
        return TRUE;

    /* no rect (except an undefined one) is contained in an undef rect */
    if (Undefined(s, t))
        return FALSE;

    for (i = 0; i < t->ndims; i++) {
        j = i + t->ndims_alloc; /* index for high sides */
        if (s->boundary[i] > r->boundary[i] || s->boundary[j] < r->boundary[j])
            return FALSE;
    }
    return TRUE;
}