File: process_left.c

package info (click to toggle)
grass 8.4.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 277,040 kB
  • sloc: ansic: 460,798; python: 227,732; cpp: 42,026; sh: 11,262; makefile: 7,007; xml: 3,637; sql: 968; lex: 520; javascript: 484; yacc: 450; asm: 387; perl: 157; sed: 25; objc: 6; ruby: 4
file content (90 lines) | stat: -rw-r--r-- 2,560 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/****************************************************************************
 *
 * MODULE:       r.buffer
 *
 * AUTHOR(S):    Michael Shapiro - CERL
 *
 * PURPOSE:      This program creates distance zones from non-zero
 *               cells in a grid layer. Distances are specified in
 *               meters (on the command-line). Window does not have to
 *               have square cells. Works both for planimetric
 *               (UTM, State Plane) and lat-long.
 *
 * COPYRIGHT:    (C) 2005 by the GRASS Development Team
 *
 *               This program is free software under the GNU General Public
 *               License (>=v2). Read the file COPYING that comes with GRASS
 *               for details.
 *
 ****************************************************************************/

#include "distance.h"

int process_left(int from_row, int to_row, int start_col, int first_zone)
{
    register int i, col, cur_zone;
    register MAPTYPE *to_ptr, *from_ptr;
    register int ncols, incr, farthest;

    /* find cells to the left
     * stop at left edge, or when ncols is bigger than the last zone,
     * or when we see a 1 in the map
     */

    col = start_col;
    from_ptr = map + MAPINDEX(from_row, col);
    to_ptr = map + MAPINDEX(to_row, col);
    farthest = distances[ndist - 1].ncols;

    /* planimetric grids will look for ncols^2
     * and can use fact that (n+1)^2 = n^2 + 2n + 1
     */

    if (window.proj != PROJECTION_LL)
        incr = 1;
    else
        incr = 0;

    ncols = 0;
    while (1) {
        if (col == 0) { /* global wrap-around */
            if (!wrap_ncols)
                break; /* only can happen with lat-lon */
            col = window.cols;
            ncols += wrap_ncols - 1;
            from_ptr = map + MAPINDEX(from_row, col);
            to_ptr = map + MAPINDEX(to_row, col);
        }
        col--;

        if (incr) {
            ncols += incr;
            incr += 2;
        }
        else
            ncols++;
        if (ncols > farthest)
            break;

        if (*--from_ptr == 1)
            break;

        /* convert 1,2,3,4 to -1,0,1,2 etc. 0 becomes ndist */

        if ((cur_zone = *--to_ptr))
            cur_zone -= ZONE_INCR;
        else
            cur_zone = ndist;

        /* find the first zone that is closer than the current value */

        for (i = first_zone; i < cur_zone; i++) {
            if (distances[i].ncols >= ncols) {
                *to_ptr = (first_zone = i) + ZONE_INCR;
                break;
            }
        }
    }

    return 0;
}