File: main.c

package info (click to toggle)
grass 8.4.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 277,040 kB
  • sloc: ansic: 460,798; python: 227,732; cpp: 42,026; sh: 11,262; makefile: 7,007; xml: 3,637; sql: 968; lex: 520; javascript: 484; yacc: 450; asm: 387; perl: 157; sed: 25; objc: 6; ruby: 4
file content (351 lines) | stat: -rw-r--r-- 11,437 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/****************************************************************************
 *
 * MODULE:       r.object.geometry
 *
 * AUTHOR(S):    Moritz Lennert
 *               Markus Metz
 *
 * PURPOSE:      Fetch object geometry parameters.
 *
 * COPYRIGHT:    (C) 2016-2021 by the GRASS Development Team
 *
 *               This program is free software under the GNU General Public
 *               License (>=v2). Read the file COPYING that comes with GRASS
 *               for details.
 *
 ***************************************************************************/

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <grass/gis.h>
#include <grass/raster.h>
#include <grass/glocale.h>

/* compare two cell values
 * return 0 if equal, 1 if different */
static int cmp_cells(CELL a, CELL b, int a_null, int b_null)
{
    return (a_null + b_null == 1 || (a_null + b_null == 0 && a != b));
}

int main(int argc, char *argv[])
{
    int row, col, nrows, ncols;

    struct Range range;
    CELL min, max;
    int in_fd;
    int i;
    struct GModule *module;
    struct Option *opt_in;
    struct Option *opt_out;
    struct Option *opt_sep;
    struct Flag *flag_m;
    char *sep;
    FILE *out_fp;
    CELL *prev_in, *cur_in, *temp_in;
    CELL cur, top, left;
    int cur_null, top_null, left_null;
    int len;
    struct obj_geo {
        double area, perimeter, x, y;
        int min_row, max_row, min_col, max_col; /* bounding box */
        int num;
    } *obj_geos;
    double unit_area;
    int n_objects;
    int planimetric, compute_areas;
    struct Cell_head cellhd;

    G_gisinit(argv[0]);

    /* Define the different options */

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("statistics"));
    G_add_keyword(_("reclass"));
    G_add_keyword(_("clumps"));
    module->description =
        _("Calculates geometry parameters for raster objects.");

    opt_in = G_define_standard_option(G_OPT_R_INPUT);

    opt_out = G_define_standard_option(G_OPT_F_OUTPUT);
    opt_out->required = NO;

    opt_sep = G_define_standard_option(G_OPT_F_SEP);

    flag_m = G_define_flag();
    flag_m->key = 'm';
    flag_m->label = _("Use meters as units instead of cells");

    /* parse options */
    if (G_parser(argc, argv))
        exit(EXIT_FAILURE);

    sep = G_option_to_separator(opt_sep);
    in_fd = Rast_open_old(opt_in->answer, "");

    if (Rast_get_map_type(in_fd) != CELL_TYPE)
        G_fatal_error(_("Input raster must be of type CELL"));

    if (opt_out->answer != NULL && strcmp(opt_out->answer, "-") != 0) {
        if (!(out_fp = fopen(opt_out->answer, "w")))
            G_fatal_error(_("Unable to open file <%s> for writing"),
                          opt_out->answer);
    }
    else {
        out_fp = stdout;
    }

    Rast_get_window(&cellhd);
    nrows = cellhd.rows;
    ncols = cellhd.cols;

    /* allocate CELL buffers two columns larger than current window */
    len = (ncols + 2) * sizeof(CELL);
    prev_in = (CELL *)G_malloc(len);
    cur_in = (CELL *)G_malloc(len);

    /* fake a previous row which is all NULL */
    Rast_set_c_null_value(prev_in, ncols + 2);

    /* set left and right edge to NULL */
    Rast_set_c_null_value(&cur_in[0], 1);
    Rast_set_c_null_value(&cur_in[ncols + 1], 1);

    Rast_read_range(opt_in->answer, "", &range);
    Rast_get_range_min_max(&range, &min, &max);
    if (Rast_is_c_null_value(&min) || Rast_is_c_null_value(&max))
        G_fatal_error(_("Empty input map <%s>"), opt_in->answer);

    /* REMARK: The following is only true if object ids are continuously
     * numbered */
    n_objects = max - min + 1;
    obj_geos = G_malloc(n_objects * sizeof(struct obj_geo));

    for (i = 0; i < n_objects; i++) {
        obj_geos[i].area = 0;
        obj_geos[i].perimeter = 0;
        obj_geos[i].min_row = nrows;
        obj_geos[i].max_row = 0;
        obj_geos[i].min_col = ncols;
        obj_geos[i].max_col = 0;
        obj_geos[i].x = 0;
        obj_geos[i].y = 0;
        obj_geos[i].num = 0;
    }

    unit_area = 0.0;
    if (flag_m->answer) {
        switch (G_begin_cell_area_calculations()) {
        case 0: /* areas don't make sense, but ignore this for now */
        case 1:
            planimetric = 1;
            unit_area = G_area_of_cell_at_row(0);
            break;
        default:
            planimetric = 0;
            break;
        }
    }
    compute_areas = flag_m->answer && !planimetric;
    G_begin_distance_calculations();

    G_message(_("Calculating statistics"));
    for (row = 0; row < nrows; row++) {
        G_percent(row, nrows + 1, 2);

        Rast_get_c_row(in_fd, cur_in + 1, row);
        cur = cur_in[0];
        cur_null = 1;
        if (compute_areas)
            unit_area = G_area_of_cell_at_row(row);
        for (col = 1; col <= ncols; col++) {
            left = cur;
            cur = cur_in[col];
            top = prev_in[col];

            left_null = cur_null;
            cur_null = Rast_is_c_null_value(&cur);
            top_null = Rast_is_c_null_value(&top);

            if (!cur_null) {
                if (flag_m->answer) {
                    obj_geos[cur - min].area += unit_area;
                    obj_geos[cur - min].num += 1;
                }
                else {
                    obj_geos[cur - min].area += 1;
                }
                obj_geos[cur - min].x +=
                    Rast_col_to_easting(col - 0.5, &cellhd);
                obj_geos[cur - min].y +=
                    Rast_row_to_northing(row + 0.5, &cellhd);
                if (obj_geos[cur - min].min_row > row)
                    obj_geos[cur - min].min_row = row;
                if (obj_geos[cur - min].max_row < row + 1)
                    obj_geos[cur - min].max_row = row + 1;
                if (obj_geos[cur - min].min_col > col)
                    obj_geos[cur - min].min_col = col;
                if (obj_geos[cur - min].max_col < col + 1)
                    obj_geos[cur - min].max_col = col + 1;
            }

            if (cmp_cells(cur, top, cur_null, top_null)) {
                if (flag_m->answer) {
                    double perimeter;

                    /* could be optimized */
                    perimeter =
                        G_distance(cellhd.west + col * cellhd.ew_res,
                                   Rast_row_to_northing(row, &cellhd),
                                   cellhd.west + (col + 1) * cellhd.ew_res,
                                   Rast_row_to_northing(row, &cellhd));

                    if (!cur_null)
                        obj_geos[cur - min].perimeter += perimeter;
                    if (!top_null)
                        obj_geos[top - min].perimeter += perimeter;
                }
                else {
                    if (!cur_null)
                        obj_geos[cur - min].perimeter += 1;
                    if (!top_null)
                        obj_geos[top - min].perimeter += 1;
                }
            }
            if (cmp_cells(cur, left, cur_null, left_null)) {
                if (flag_m->answer) {
                    double perimeter;

                    /* could be optimized */
                    perimeter =
                        G_distance(cellhd.west + col * cellhd.ew_res,
                                   Rast_row_to_northing(row, &cellhd),
                                   cellhd.west + (col)*cellhd.ew_res,
                                   Rast_row_to_northing(row + 1, &cellhd));

                    if (!cur_null)
                        obj_geos[cur - min].perimeter += perimeter;
                    if (!left_null)
                        obj_geos[left - min].perimeter += perimeter;
                }
                else {
                    if (!cur_null)
                        obj_geos[cur - min].perimeter += 1;
                    if (!left_null)
                        obj_geos[left - min].perimeter += 1;
                }
            }
        }

        /* last col, right borders */
        if (flag_m->answer) {
            double perimeter;

            perimeter =
                G_distance(cellhd.east, Rast_row_to_northing(row, &cellhd),
                           cellhd.east, Rast_row_to_northing(row + 1, &cellhd));
            if (!cur_null)
                obj_geos[cur - min].perimeter += perimeter;
        }
        else {
            if (!cur_null)
                obj_geos[cur - min].perimeter += 1;
        }

        /* switch the buffers so that the current buffer becomes the previous */
        temp_in = cur_in;
        cur_in = prev_in;
        prev_in = temp_in;
    }

    /* last row, bottom borders */
    G_percent(row, nrows + 1, 2);
    for (col = 1; col <= ncols; col++) {
        top = prev_in[col];
        top_null = Rast_is_c_null_value(&top);

        if (flag_m->answer) {
            double perimeter;

            /* could be optimized */
            perimeter = G_distance(cellhd.west + col * cellhd.ew_res,
                                   Rast_row_to_northing(row, &cellhd),
                                   cellhd.west + (col + 1) * cellhd.ew_res,
                                   Rast_row_to_northing(row, &cellhd));

            if (!top_null)
                obj_geos[top - min].perimeter += perimeter;
        }
        else {
            if (!top_null)
                obj_geos[top - min].perimeter += 1;
        }
    }
    G_percent(1, 1, 1);

    Rast_close(in_fd);
    G_free(cur_in);
    G_free(prev_in);

    G_message(_("Writing output"));
    /* print table */
    fprintf(out_fp, "cat%s", sep);
    fprintf(out_fp, "area%s", sep);
    fprintf(out_fp, "perimeter%s", sep);
    fprintf(out_fp, "compact_square%s", sep);
    fprintf(out_fp, "compact_circle%s", sep);
    fprintf(out_fp, "fd%s", sep);
    fprintf(out_fp, "mean_x%s", sep);
    fprintf(out_fp, "mean_y");
    fprintf(out_fp, "\n");

    /* print table body */
    for (i = 0; i < n_objects; i++) {
        G_percent(i, n_objects - 1, 1);
        /* skip empty objects */
        if (obj_geos[i].area == 0)
            continue;

        fprintf(out_fp, "%d%s", min + i, sep);
        fprintf(out_fp, "%f%s", obj_geos[i].area, sep);
        fprintf(out_fp, "%f%s", obj_geos[i].perimeter, sep);
        fprintf(out_fp, "%f%s",
                4 * sqrt(obj_geos[i].area) / obj_geos[i].perimeter, sep);
        fprintf(out_fp, "%f%s",
                obj_geos[i].perimeter / (2 * sqrt(M_PI * obj_geos[i].area)),
                sep);
        /* log 1 = 0, so avoid that by always adding 0.001 to the area: */
        fprintf(out_fp, "%f%s",
                2 * log(obj_geos[i].perimeter) / log(obj_geos[i].area + 0.001),
                sep);
        if (!flag_m->answer)
            obj_geos[i].num = obj_geos[i].area;
        fprintf(out_fp, "%f%s", obj_geos[i].x / obj_geos[i].num, sep);
        fprintf(out_fp, "%f", obj_geos[i].y / obj_geos[i].num);
        /* object id: i + min */

        /* TODO */
        /* smoothness */
        /* perimeter of bounding box / perimeter -> smoother objects have a
         * higher smoothness value smoothness is in the range 0 < smoothness <=
         * 1 */

        /* bounding box perimeter */

        /* bounding box size */

        /* variance of X and Y to approximate bounding ellipsoid */

        fprintf(out_fp, "\n");
    }
    if (out_fp != stdout)
        fclose(out_fp);

    exit(EXIT_SUCCESS);
}