1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
<!-- meta page description: Temporal data processing in GRASS GIS -->
<!-- meta page index: temporal -->
The temporal enabled GRASS introduces three new data types that
are designed to handle time series data:
<ul>
<li> <em>Space time raster datasets</em> (strds) are designed to
manage raster map time series. Modules that process strds have the
naming prefix <em>t.rast</em>.</li>
<li> <em>Space time 3D raster datasets</em> (str3ds) are designed to
manage 3D raster map time series. Modules that process str3ds have
the naming prefix <em>t.rast3d</em>.</li>
<li> <em>Space time vector datasets</em> (stvds) are designed to
manage vector map time series. Modules that process stvds have the
naming prefix <em>t.vect</em>.</li>
</ul>
These new data types can be managed, analyzed and processed with
temporal modules that are based on the GRASS GIS temporal framework.
<h3>Temporal data management in general</h3>
Space time datasets are stored in a temporal database. A core principle
of the temporal framework is that temporal databases are mapset
specific. A new temporal database is created when a temporal command is
invoked in a mapset that does not contain any temporal databases yet.
For example, when a mapset was recently created.
<p>
<b>Therefore, as space-time datasets are mapset specific, they can only
register raster, 3D raster or vector maps from the same mapset.</b>
<p>
By default, space-time datasets can not register maps from other
mapsets. This is a security measure, since the registration of maps in
a space-time dataset will always modify the metadata of the registered
map. This is critical if:
<ul>
<li>The user has no write access to the maps from other mapsets
he/she wants to register</li>
<li>If registered maps are removed from other mapsets, the temporal
database will not be updated and will contain ghost maps</li>
</ul>
SQLite3 or PostgreSQL are supported as temporal database backends.
Temporal databases stored in other mapsets can be accessed as long as
those other mapsets are in the user's current mapset search path
(managed with <a href="g.mapsets.html">g.mapsets</a>). Access to
space-time datasets from other mapsets is read-only. They can not be
modified or removed.
<p>
Connection settings are performed with <a href="t.connect.html">t.connect</a>.
By default, a SQLite3 database is
created in the current mapset to store all space-time datasets and
registered time series maps in that mapset.
<p>
New space-time datasets are created in the temporal database with
<a href="t.create.html">t.create</a>. The name of the new dataset, the
type (strds, str3ds, stvds), the title and the description must be
provided for creation. Optionally, the temporal type (absolute,
relative) and the semantic information can be provided.
<p>
The module <a href="t.register.html">t.register</a> is designed to
register raster, 3D raster and vector maps in the temporal database and
in the space-time datasets. It supports different input options. Maps
to register can be provided as a comma separated string at the command
line, or in an input file. The module supports the definition of time
stamps (time instances or intervals) for each map in the input file.
With <a href="t.unregister.html">t.unregister</a> maps can be
unregistered from space-time datasets and from the temporal database.
<p>
<b>Important</b><br>
<i>Use only temporal commands like <a href="t.register.html">t.register</a>
to attach a time stamp to raster,
3D raster and vector maps. The commands r.timestamp, r3.timestamp and
v.timestamp should not be used because they only modify the metadata of
the map in the spatial database, but they do not register maps in the
temporal database. However, maps with timestamps attached by means of
*.timestamp modules can be registered in space-time datasets using the
existing timestamp.</i>
<p>
The module <a href="t.remove.html">t.remove</a> will remove the
space-time datasets from the temporal database and optionally all
registered maps. It will take care of multiple map registration, hence
if maps are registered in several space-time datasets in the current
mapset. Use <a href="t.support.html">t.support</a> to modify the
metadata of space time datasets or to update the metadata that is
derived from registered maps. This module also checks for removed and
modified maps and updates the space-time datasets accordingly. Rename a
space-time dataset with <a href="t.rename.html">t.rename</a>.
<p>
To print information about space-time datasets or registered maps, the
module <a href="t.info.html">t.info</a> can be used.
<a href="t.list.html">t.list</a> will list all space-time datasets and
registered maps in the temporal database.
<p>
The module <a href="t.topology.html">t.topology</a> was designed to
compute and check the temporal topology of space-time datasets.
Moreover, the module <a href="t.sample.html">t.sample</a> samples input
space-time dataset(s) with a sample space-time dataset and prints the
result to standard output. Different sampling methods are supported and
can be combined.
<p>
List of general management modules:
<ul>
<li><a href="t.connect.html">t.connect</a></li>
<li><a href="t.create.html">t.create</a></li>
<li><a href="t.rename.html">t.rename</a></li>
<li><a href="t.remove.html">t.remove</a></li>
<li><a href="t.register.html">t.register</a></li>
<li><a href="t.unregister.html">t.unregister</a></li>
<li><a href="t.info.html">t.info</a></li>
<li><a href="t.list.html">t.list</a></li>
<li><a href="t.sample.html">t.sample</a></li>
<li><a href="t.support.html">t.support</a></li>
<li><a href="t.topology.html">t.topology</a></li>
</ul>
<h3>Modules to visualize space-time datasets and temporal data</h3>
<ul>
<li><a href="g.gui.animation.html">g.gui.animation</a></li>
<li><a href="g.gui.timeline.html">g.gui.timeline</a></li>
<li><a href="g.gui.mapswipe.html">g.gui.mapswipe</a></li>
<li><a href="g.gui.tplot.html">g.gui.tplot</a></li>
</ul>
<h3>Modules to process space-time raster datasets</h3>
The focus of the temporal GIS framework is the processing and analysis
of raster time series. Hence, the majority of the temporal modules are
designed to process space-time raster datasets (strds). However, there
are several modules to process space-time 3D raster datasets and
space-time vector datasets as well.
<h4>Querying and map calculation</h4>
Maps registered in a space-time raster dataset can be listed using
<a href="t.rast.list.html">t.rast.list</a>. This module supports several
methods to list maps and uses SQL queries to determine how these maps
are selected and sorted. Subsets of space-time raster datasets can be
extracted with <a href="t.rast.extract.html">t.rast.extract</a> that
allows performing additional mapcalc operations on the selected raster
maps.
<p>
Several modules in the temporal framework have a <em>where</em> option.
This option allows performing different selections of maps registered
in the temporal database and in space-time datasets. The columns that
can be used to perform these selections are: <i>id, name, creator,
mapset, temporal_type, creation_time, start_time, end_time, north,
south, west, east, nsres, ewres, cols, rows, number_of_cells, min and
max</i>. Note that for vector time series, i.e. stvds, some of the
columns that can be queried to list/select vector maps differ from
those for space-time raster datasets (check with <code>t.vect.list --help</code>).
<ul>
<li><a href="t.rast.extract.html">t.rast.extract</a></li>
<li><a href="t.rast.gapfill.html">t.rast.gapfill</a></li>
<li><a href="t.rast.mapcalc.html">t.rast.mapcalc</a></li>
<li><a href="t.rast.colors.html">t.rast.colors</a></li>
<li><a href="t.rast.neighbors.html">t.rast.neighbors</a></li>
</ul>
<p>
Similar to the <em>where</em> option, selected modules like
<a href="t.rast.univar.html">t.rast.univar</a> support a
<em>region_relation</em> option to limit computations to maps of
the space time raster dataset that have a given spatial relation to the
current computational region. Supported spatial relations are:
<ul>
<li>"overlaps": process only maps that spatially overlap ("intersect")
with the current computational region</li>
<li>"is_contained": process only maps that are fully within the current
computational region</li>
<li>"contains": process only maps that contain (fully cover) the current
computational region</li>
</ul>
Space time raster datasets may contain raster maps with varying spatial
extent like for example series of scenes of satellite images. For such
cases the <em>region_relation</em> option can be useful.
<p>
Moreover, there is <a href="v.what.strds.html">v.what.strds</a>, that
uploads space-time raster dataset values at positions of vector points,
to the attribute table of the vector map.
<h4>Aggregation and accumulation analysis</h4>
The temporal framework supports the aggregation of space-time raster
datasets. It provides three modules to perform aggregation using
different approaches. To aggregate a space-time raster dataset using a
temporal granularity like 4 months, 7 days and so on, use
<a href="t.rast.aggregate.html">t.rast.aggregate</a>. The module
<a href="t.rast.aggregate.ds.html">t.rast.aggregate.ds</a> allows
aggregating a space-time raster dataset using the time intervals of the
maps of another space-time dataset (raster, 3D raster and vector). A
simple interface to <a href="r.series.html">r.series</a> is the module
<a href="t.rast.series.html">t.rast.series</a> that processes the whole
input space-time raster dataset or a subset of it.
<ul>
<li><a href="t.rast.aggregate.html">t.rast.aggregate</a></li>
<li><a href="t.rast.aggregate.ds.html">t.rast.aggregate.ds</a></li>
<li><a href="t.rast.series.html">t.rast.series</a></li>
<li><a href="t.rast.accumulate.html">t.rast.accumulate</a></li>
<li><a href="t.rast.accdetect.html">t.rast.accdetect</a></li>
</ul>
<h4>Export/import conversion</h4>
Space-time raster datasets can be exported with
<a href="t.rast.export.html">t.rast.export</a> as a compressed tar
archive. Such archives can be then imported using
<a href="t.rast.import.html">t.rast.import</a>.
<p>
The module <a href="t.rast.to.rast3.html">t.rast.to.rast3</a> converts
space-time raster datasets into space-time voxel cubes. All 3D raster
modules can be used to process such voxel cubes. This conversion allows
the export of space-time raster datasets as netCDF files that include
time as one dimension.
<ul>
<li><a href="t.rast.export.html">t.rast.export</a></li>
<li><a href="t.rast.import.html">t.rast.import</a></li>
<li><a href="t.rast.out.vtk.html">t.rast.out.vtk</a></li>
<li><a href="t.rast.to.rast3.html">t.rast.to.rast3</a></li>
<li><a href="r3.out.netcdf.html">r3.out.netcdf</a></li>
</ul>
<h4>Statistics and gap filling</h4>
<ul>
<li><a href="t.rast.univar.html">t.rast.univar</a></li>
<li><a href="t.rast.gapfill.html">t.rast.gapfill</a></li>
</ul>
<h3>Modules to manage, process and analyze STR3DS and STVDS</h3>
Several space-time vector dataset modules were developed to allow the
handling of vector time series data.
<ul>
<li><a href="t.vect.extract.html">t.vect.extract</a></li>
<li><a href="t.vect.import.html">t.vect.import</a></li>
<li><a href="t.vect.export.html">t.vect.export</a></li>
<li><a href="t.vect.observe.strds.html">t.vect.observe.strds</a></li>
<li><a href="t.vect.univar.html">t.vect.univar</a></li>
<li><a href="t.vect.what.strds.html">t.vect.what.strds</a></li>
<li><a href="t.vect.db.select.html">t.vect.db.select</a></li>
</ul>
The space-time 3D raster dataset modules are doing exactly the same as
their raster pendants, but with 3D raster map layers:
<ul>
<li><a href="t.rast3d.list.html">t.rast3d.list</a></li>
<li><a href="t.rast3d.extract.html">t.rast3d.extract</a></li>
<li><a href="t.rast3d.mapcalc.html">t.rast3d.mapcalc</a></li>
<li><a href="t.rast3d.univar.html">t.rast3d.univar</a></li>
</ul>
<h4>See also</h4>
<ul>
<li> Gebbert, S., Pebesma, E. 2014. <i>TGRASS: A temporal GIS for field based environmental modeling</i>.
Environmental Modelling & Software 53, 1-12 (<a href="https://doi.org/10.1016/j.envsoft.2013.11.001">DOI</a>)
- <a href="http://ifgi.uni-muenster.de/~epebe_01/tgrass.pdf">preprint PDF</a></li>
<li> Gebbert, S., Pebesma, E. 2017. <i>The GRASS GIS temporal framework</i>. International Journal of
Geographical Information Science 31, 1273-1292 (<a href="https://doi.org/10.1080/13658816.2017.1306862">DOI</a>)</li>
<li> Gebbert, S., Leppelt, T., Pebesma, E., 2019. <i>A topology based spatio-temporal map algebra for big data analysis</i>.
Data 4, 86. (<a href="https://doi.org/10.3390/data4020086">DOI</a>)</li>
<li> <a href="https://grasswiki.osgeo.org/wiki/Temporal_data_processing">Temporal
data processing</a> (Wiki)</li>
<li> Vaclav Petras, Anna Petrasova, Helena Mitasova, Markus Neteler,
<b>FOSS4G 2014 workshop</b>: <br>
<a href="http://fatra.cnr.ncsu.edu/temporal-grass-workshop/">Spatio-temporal
data handling and visualization in GRASS GIS</a></li>
<li> <a href="http://www.geostat-course.org/Topic_Gebbert">GEOSTAT 2012 GRASS Course</a></li>
</ul>
<ul>
<li><a href="rasterintro.html">Introduction into raster data processing</a></li>
<li><a href="raster3dintro.html">Introduction into 3D raster data (voxel) processing</a></li>
<li><a href="vectorintro.html">Introduction into vector data processing</a></li>
<li><a href="imageryintro.html">Introduction into image processing</a></li>
<li><a href="databaseintro.html">Database management</a></li>
<li><a href="projectionintro.html">Projections and spatial transformations</a></li>
<li><a href="wxguiintro.html">Graphical User Interface</a></li>
</ul>
|