1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
/****************************************************************
*
* MODULE: v.generalize
*
* AUTHOR(S): Daniel Bundala
*
* PURPOSE: Definition of a matrix and basic operations with
* matrices
*
* COPYRIGHT: (C) 2002-2005 by the GRASS Development Team
*
* This program is free software under the
* GNU General Public License (>=v2).
* Read the file COPYING that comes with GRASS
* for details.
*
****************************************************************/
#include <string.h>
#include <grass/gis.h>
#include <grass/glocale.h>
#include "matrix.h"
int matrix_init(int rows, int cols, MATRIX *res)
{
int i, j;
res->rows = rows;
res->cols = cols;
res->a = (double **)G_calloc(rows, sizeof(double *));
if (res->a == NULL)
return 0;
for (i = 0; i < rows; i++) {
res->a[i] = (double *)G_calloc(cols, sizeof(double));
if (res->a[i] == NULL) {
for (j = 0; j < i; j++)
G_free(res->a[j]);
G_free(res->a);
return 0;
}
}
return 1;
}
void matrix_free(MATRIX *m)
{
int i;
for (i = 0; i < m->rows; i++)
G_free(m->a[i]);
G_free(m->a);
return;
}
int matrix_mult(MATRIX *a, MATRIX *b, MATRIX *res)
{
if (a->cols != b->rows)
return 0;
/*if (!matrix_init(a.rows, b.cols, res))
* return 0;
*/
int i, j, k;
for (i = 0; i < a->rows; i++)
for (j = 0; j < b->cols; j++) {
res->a[i][j] = 0;
for (k = 0; k < a->cols; k++)
res->a[i][j] += a->a[i][k] * b->a[k][j];
}
return 1;
}
int matrix_add_identity(double s, MATRIX *m)
{
if (m->rows != m->cols)
return 0;
int i;
for (i = 0; i < m->rows; i++)
m->a[i][i] += s;
return 1;
}
/* three following functions implements elementary row operations on matrices */
/* auxialiry function for matrix_inverse, swaps two rows of given matrix */
void matrix_swap_rows(int x, int y, MATRIX *m)
{
int i;
for (i = 0; i < m->cols; i++) {
double t;
t = m->a[x][i];
m->a[x][i] = m->a[y][i];
m->a[y][i] = t;
}
return;
}
/* auxiliary function for matrix_inverse, multiplies row of a matrix by
* a scalar */
void matrix_row_scalar(int row, double s, MATRIX *m)
{
int i;
for (i = 0; i < m->cols; i++)
m->a[row][i] *= s;
return;
}
/* auxiliary function for matrix_inverse, adds a multiple of
* one row to another.
* i.e row[ra] = row[ra] + row[rb] * s;
*/
void matrix_row_add_multiple(int ra, int rb, double s, MATRIX *m)
{
int i;
for (i = 0; i < m->cols; i++)
m->a[ra][i] += m->a[rb][i] * s;
return;
}
/* TODO: don't test directly equality to zero */
int matrix_inverse(MATRIX *a, MATRIX *res, int percents)
{
int i, j;
/* not a square matrix */
if (a->rows != a->cols)
return 0;
/* initialize output matrix to the identity matrix */
if (!matrix_init(a->rows, a->rows, res)) {
G_fatal_error(_("Out of memory"));
return 0;
}
for (i = 0; i < a->rows; i++) {
memset(res->a[i], 0, sizeof(double) * a->cols);
res->a[i][i] = 1;
}
/* in order to obtain the inverse of a matrix, we run
* gauss elimination on the matrix and each time we apply
* elementary row operation on this matrix, we apply the
* same operation on the identity matrix. Correctness of
* this follows from the fact that an invertible matrix
* is row equivalent to the identity matrix.
*/
int n = a->rows;
if (percents)
G_percent_reset();
for (i = 0; i < n; i++) {
int found = 0;
double c;
if (percents)
G_percent(i, n, 1);
for (j = i; j < n; j++) {
if (a->a[j][i] != 0) { /* need to change this row to something */
found = 1; /* more sensible */
matrix_swap_rows(i, j, a);
matrix_swap_rows(i, j, res);
break;
}
}
if (!found)
return 0;
c = (double)1.0 / a->a[i][i];
matrix_row_scalar(i, c, a);
matrix_row_scalar(i, c, res);
for (j = 0; j < n; j++) {
if (i == j)
continue;
c = -a->a[j][i];
if (c == 0.0)
continue;
matrix_row_add_multiple(j, i, c, a);
matrix_row_add_multiple(j, i, c, res);
}
}
return 1;
}
void matrix_mult_scalar(double s, MATRIX *m)
{
int i, j;
for (i = 0; i < m->rows; i++)
for (j = 0; j < m->cols; j++)
m->a[i][j] *= s;
}
void matrix_add(MATRIX *a, MATRIX *b, MATRIX *res)
{
int i, j;
for (i = 0; i < res->rows; i++)
for (j = 0; j < res->cols; j++)
res->a[i][j] = a->a[i][j] + b->a[i][j];
}
void matrix_print(MATRIX *a)
{
int i, j;
for (i = 0; i < a->rows; i++) {
double s = 0;
for (j = 0; j < a->cols; j++) {
printf("%.3lf ", a->a[i][j]);
s += a->a[i][j];
}
printf("|%.5lf\n", s);
}
printf("\n");
}
|