1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/****************************************************************
*
* MODULE: v.generalize
*
* AUTHOR(S): Daniel Bundala
*
* PURPOSE: Network generalization
*
* COPYRIGHT: (C) 2002-2005 by the GRASS Development Team
*
* This program is free software under the
* GNU General Public License (>=v2).
* Read the file COPYING that comes with GRASS
* for details.
*
****************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <grass/gis.h>
#include <grass/vector.h>
#include <grass/glocale.h>
typedef struct {
int **edge; /* edge for each vertex */
int *degree; /* degree of vertices */
int vertices;
} NdglGraph_s;
void graph_free(NdglGraph_s *g)
{
int i;
return;
G_free(g->degree);
if (g->edge) {
for (i = 0; i < g->vertices; g++)
G_free(g->edge[i]);
}
G_free(g->edge);
return;
}
int graph_init(NdglGraph_s *g, int vertices)
{
g->edge = NULL;
g->degree = NULL;
g->vertices = vertices;
g->degree = (int *)G_calloc(vertices, sizeof(int));
if (!g->degree)
return 0;
g->edge = (int **)G_calloc(vertices, sizeof(int *));
if (!g->edge) {
graph_free(g);
return 0;
}
return 1;
}
/* writes the most important part of the In network to Out network
* according to the thresholds, output is bigger for smaller
* thresholds. Function returns the number of points written
TODO: rewrite ilist by something more space and time efficient
or at least, implement append which does not check whether
the value is already in the list*/
int graph_generalization(struct Map_info *In, struct Map_info *Out,
int mask_type, double degree_thresh,
double closeness_thresh, double betweeness_thresh)
{
int i;
int output = 0;
dglGraph_s *gr;
NdglGraph_s g;
int nnodes;
struct line_pnts *Points;
struct line_cats *Cats;
int type;
int *closeness, *queue, *internal, *paths, *comp, *dist;
double *betw, *betweeness;
struct ilist **prev;
if (0 != Vect_net_build_graph(In, mask_type, 0, 0, NULL, NULL, NULL, 0, 0))
G_fatal_error(_("Unable to build graph for vector map <%s>"),
Vect_get_full_name(In));
gr = Vect_net_get_graph(In);
/* build own graph by edge<->vertex */
/* each vertex represents undirected edge */
if (!graph_init(&g, dglGet_EdgeCount(gr) / 2 + 1)) {
G_fatal_error(_("Out of memory"));
return 0;
}
nnodes = dglGet_NodeCount(gr);
for (i = 0; i < nnodes; i++) {
dglInt32_t *node, *edgeset, *edge;
dglEdgesetTraverser_s et;
node = dglGetNode(gr, (dglInt32_t)i);
edgeset = dglNodeGet_OutEdgeset(gr, node);
dglEdgeset_T_Initialize(&et, gr, edgeset);
for (edge = dglEdgeset_T_First(&et); edge;
edge = dglEdgeset_T_Next(&et)) {
int id, from_degree, to_degree;
dglInt32_t *to, *from, *to_edgeset, *to_edge;
dglEdgesetTraverser_s to_et;
from = dglEdgeGet_Head(gr, edge);
to = dglEdgeGet_Tail(gr, edge);
to_edgeset = dglNodeGet_OutEdgeset(gr, to);
dglEdgeset_T_Initialize(&to_et, gr, to_edgeset);
to_degree = dglNodeGet_OutDegree(gr, to);
from_degree = dglNodeGet_OutDegree(gr, from);
id = labs(dglEdgeGet_Id(gr, edge));
/* allocate memory, if it has not been not allocated already */
if (!g.edge[id]) {
g.edge[id] = G_malloc(sizeof(int) * (to_degree + from_degree));
if (!g.edge[id]) {
graph_free(&g);
G_fatal_error(_("Out of memory"));
return 0;
}
}
for (to_edge = dglEdgeset_T_First(&to_et); to_edge;
to_edge = dglEdgeset_T_Next(&to_et)) {
int id2 = labs(dglEdgeGet_Id(gr, to_edge));
g.edge[id][g.degree[id]++] = id2;
}
dglEdgeset_T_Release(&to_et);
}
dglEdgeset_T_Release(&et);
}
closeness = (int *)G_calloc(g.vertices, sizeof(int));
queue = (int *)G_calloc(g.vertices, sizeof(int));
dist = (int *)G_calloc(g.vertices, sizeof(int));
internal = (int *)G_calloc(g.vertices, sizeof(int));
betweeness = (double *)G_calloc(g.vertices, sizeof(double));
paths = (int *)G_calloc(g.vertices, sizeof(int));
comp = (int *)G_calloc(g.vertices, sizeof(int));
betw = (double *)G_calloc(g.vertices, sizeof(double));
prev = (struct ilist **)G_calloc(g.vertices, sizeof(struct ilist *));
for (i = 0; i < g.vertices; i++)
prev[i] = Vect_new_list();
/* run BFS from each vertex and find the sum
* of the shortest paths from each vertex */
G_percent_reset();
G_message(_("Calculating centrality measures..."));
for (i = 1; i < g.vertices; i++) {
int front, back, j;
G_percent(i, g.vertices - 1, 1);
front = 0;
back = 1;
queue[front] = i;
/* Is this portable? */
memset(dist, 127, sizeof(int) * g.vertices);
dist[i] = 0;
closeness[i] = 0;
comp[i] = 0;
memset(paths, 0, sizeof(int) * g.vertices);
paths[i] = 1;
memset(internal, 0, sizeof(int) * g.vertices);
for (j = 0; j < g.vertices; j++)
Vect_reset_list(prev[j]);
while (front != back) {
int v;
v = queue[front];
comp[i]++;
front = (front + 1) % g.vertices;
for (j = 0; j < g.degree[v]; j++) {
int to = g.edge[v][j];
if (dist[to] > dist[v] + 1) {
paths[to] = paths[v];
internal[v] = 1;
dist[to] = dist[v] + 1;
closeness[i] += dist[to];
queue[back] = to;
Vect_reset_list(prev[to]);
Vect_list_append(prev[to], v);
back = (back + 1) % g.vertices;
}
else if (dist[to] == dist[v] + 1) {
internal[v] = 1;
paths[to] += paths[v];
Vect_list_append(prev[to], v);
}
}
}
/* finally run another BFS from the leaves in the BFS DAG
* and calculate betweeness centrality measure */
front = 0;
back = 0;
for (j = 1; j < g.vertices; j++)
if (!internal[j] && dist[j] <= g.vertices) {
queue[back] = j;
back = (back + 1) % g.vertices;
}
memset(betw, 0, sizeof(double) * g.vertices);
while (front != back) {
int v;
v = queue[front];
front = (front + 1) % g.vertices;
betweeness[v] += betw[v];
for (j = 0; j < prev[v]->n_values; j++) {
int to = prev[v]->value[j];
if (betw[to] == 0) {
queue[back] = to;
back = (back + 1) % g.vertices;
}
betw[to] += (betw[v] + (double)1.0) *
((double)paths[to] / (double)paths[v]);
}
}
}
Points = Vect_new_line_struct();
Cats = Vect_new_cats_struct();
for (i = 1; i < g.vertices; i++) {
if ((g.degree[i] >= degree_thresh &&
(comp[i] - 1.0) / closeness[i] >= closeness_thresh &&
betweeness[i] >= betweeness_thresh)) {
type = Vect_read_line(In, Points, Cats, i);
if (type & mask_type) {
output += Points->n_points;
Vect_write_line(Out, type, Points, Cats);
}
}
}
G_free(dist);
G_free(closeness);
G_free(paths);
G_free(betweeness);
G_free(internal);
G_free(queue);
G_free(comp);
G_free(betw);
for (i = 0; i < g.vertices; i++)
Vect_destroy_list(prev[i]);
G_free(prev);
graph_free(&g);
return output;
}
|