1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
/****************************************************************
*
* MODULE: v.generalize
*
* AUTHOR(S): Daniel Bundala
*
* PURPOSE: Module for line simplification and smoothing
*
* COPYRIGHT: (C) 2002-2005 by the GRASS Development Team
*
* This program is free software under the
* GNU General Public License (>=v2).
* Read the file COPYING that comes with GRASS
* for details.
*
****************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <grass/gis.h>
#include <grass/vector.h>
#include <grass/glocale.h>
#include "point.h"
#include "pq.h"
#include "misc.h"
int douglas_peucker(struct line_pnts *Points, double thresh, int with_z)
{
int *stack = G_malloc(sizeof(int) * Points->n_points * 2);
if (!stack) {
G_fatal_error(_("Out of memory"));
return Points->n_points;
}
int *index = G_malloc(
sizeof(int) * Points->n_points); /* Indices of points in output line */
if (!index) {
G_fatal_error(_("Out of memory"));
G_free(stack);
return Points->n_points;
}
int top = 2; /* first free slot in the stack */
int icount = 1; /* number of indices stored */
int i;
thresh *= thresh;
index[0] = 0; /* first point is always in output line */
/* stack contains pairs of elements: (beginning, end) */
stack[0] = 0;
stack[1] = Points->n_points - 1;
while (top > 0) { /*there are still segments to consider */
/*Pop indices of the segment from the stack */
int last = stack[--top];
int first = stack[--top];
double x1 = Points->x[first];
double y1 = Points->y[first];
double z1 = Points->z[first];
double x2 = Points->x[last];
double y2 = Points->y[last];
double z2 = Points->z[last];
int maxindex = -1;
double maxdist = -1;
for (i = first + 1; i <= last - 1;
i++) { /* Find the furthermost point between first, last */
double px, py, pz, pdist;
int status;
double dist = dig_distance2_point_to_line(
Points->x[i], Points->y[i], Points->z[i], x1, y1, z1, x2, y2,
z2, with_z, &px, &py, &pz, &pdist, &status);
if (maxindex == -1 ||
dist > maxdist) { /* update the furthermost point so far seen */
maxindex = i;
maxdist = dist;
}
}
if (maxindex == -1 ||
maxdist <= thresh) { /* no points between or all point are inside
the threshold */
index[icount++] = last;
}
else {
/* break line into two parts, the order of pushing is crucial! It
* guarantees, that we are going to the left */
stack[top++] = maxindex;
stack[top++] = last;
stack[top++] = first;
stack[top++] = maxindex;
}
}
Points->n_points = icount;
/* finally, select only points marked in the algorithm */
for (i = 0; i < icount; i++) {
Points->x[i] = Points->x[index[i]];
Points->y[i] = Points->y[index[i]];
Points->z[i] = Points->z[index[i]];
}
G_free(stack);
G_free(index);
return (Points->n_points);
}
int lang(struct line_pnts *Points, double thresh, int look_ahead, int with_z)
{
int count = 1; /* place where the next point will be added. i.e after the
last point */
int from = 0;
int to = look_ahead;
thresh *= thresh;
while (from <
Points->n_points - 1) { /* repeat until we reach the last point */
int i;
int found =
0; /* whether we have found the point outside the threshold */
double x1 = Points->x[from];
double y1 = Points->y[from];
double z1 = Points->z[from];
if (Points->n_points - 1 <
to) { /* check that we are always in the line */
to = Points->n_points - 1;
}
double x2 = Points->x[to];
double y2 = Points->y[to];
double z2 = Points->z[to];
for (i = from + 1; i < to; i++) {
double px, py, pz, pdist;
int status;
if (dig_distance2_point_to_line(
Points->x[i], Points->y[i], Points->z[i], x1, y1, z1, x2,
y2, z2, with_z, &px, &py, &pz, &pdist, &status) > thresh) {
found = 1;
break;
}
}
if (found) {
to--;
}
else {
Points->x[count] = Points->x[to];
Points->y[count] = Points->y[to];
Points->z[count] = Points->z[to];
count++;
from = to;
to += look_ahead;
}
}
Points->n_points = count;
return Points->n_points;
}
/* Eliminates all vertices which are close(r than eps) to each other */
int vertex_reduction(struct line_pnts *Points, double eps, int with_z)
{
int start, i, count, n;
n = Points->n_points;
/* there's almost nothing to remove */
if (n <= 2)
return Points->n_points;
count = 0;
start = 0;
eps *= eps;
count = 1; /*we never remove the first point */
for (i = 0; i < n - 1; i++) {
double dx = Points->x[i] - Points->x[start];
double dy = Points->y[i] - Points->y[start];
double dz = Points->z[i] - Points->z[start];
double dst = dx * dx + dy * dy;
if (with_z) {
dst += dz * dz;
}
if (dst > eps) {
Points->x[count] = Points->x[i];
Points->y[count] = Points->y[i];
Points->z[count] = Points->z[i];
count++;
start = i;
}
}
/* last point is also always preserved */
Points->x[count] = Points->x[n - 1];
Points->y[count] = Points->y[n - 1];
Points->z[count] = Points->z[n - 1];
count++;
Points->n_points = count;
return Points->n_points;
}
/*Reumann-Witkam algorithm
* Returns number of points in the output line
*/
int reumann_witkam(struct line_pnts *Points, double thresh, int with_z)
{
int i, count;
POINT x0, x1, x2, sub, diff;
double subd, diffd, sp, dist;
int n;
n = Points->n_points;
if (n < 3)
return n;
thresh *= thresh;
count = 1;
point_assign(Points, 0, with_z, &x1, 0);
point_assign(Points, 1, with_z, &x2, 0);
point_subtract(x2, x1, &sub);
subd = point_dist2(sub);
for (i = 2; i < n; i++) {
point_assign(Points, i, with_z, &x0, 0);
point_subtract(x1, x0, &diff);
diffd = point_dist2(diff);
sp = point_dot(diff, sub);
dist = (diffd * subd - sp * sp) / subd;
/* if the point is out of the threshlod-sausage, store it and calculate
* all variables which do not change for each line-point calculation */
if (dist > thresh) {
point_assign(Points, i - 1, with_z, &x1, 0);
point_assign(Points, i, with_z, &x2, 0);
point_subtract(x2, x1, &sub);
subd = point_dist2(sub);
Points->x[count] = x0.x;
Points->y[count] = x0.y;
Points->z[count] = x0.z;
count++;
}
}
Points->x[count] = Points->x[n - 1];
Points->y[count] = Points->y[n - 1];
Points->z[count] = Points->z[n - 1];
Points->n_points = count + 1;
return Points->n_points;
}
/* douglas-peucker algorithm which simplifies a line to a line with
* at most reduction% of points.
* returns the number of points in the output line. It is approx
* reduction/100 * Points->n_points.
*/
int douglas_peucker_reduction(struct line_pnts *Points, double thresh,
double reduction, int with_z)
{
int i;
int n = Points->n_points;
/* the maximum number of points which may be
* included in the output */
int nexp = n * (reduction / (double)100.0);
/* line too short */
if (n < 3)
return n;
/* indicates which point were selected by the algorithm */
int *sel;
sel = G_calloc(sizeof(int), n);
if (sel == NULL) {
G_fatal_error(_("Out of memory"));
return n;
}
/* array used for storing the indices of line segments+furthest point */
int *index;
index = G_malloc(sizeof(int) * 3 * n);
if (index == NULL) {
G_fatal_error(_("Out of memory"));
G_free(sel);
return n;
}
int indices;
indices = 0;
/* preserve first and last point */
sel[0] = sel[n - 1] = 1;
nexp -= 2;
thresh *= thresh;
double d;
int mid = get_furthest(Points, 0, n - 1, with_z, &d);
int em;
/* priority queue of line segments,
* key is the distance of the furthest point */
binary_heap pq;
if (!binary_heap_init(n, &pq)) {
G_fatal_error(_("Out of memory"));
G_free(sel);
G_free(index);
return n;
}
if (d > thresh) {
index[0] = 0;
index[1] = n - 1;
index[2] = mid;
binary_heap_push(d, 0, &pq);
indices = 3;
}
/* while we can add new points and queue is non-empty */
while (nexp > 0) {
/* empty heap */
if (!binary_heap_extract_max(&pq, &em))
break;
int left = index[em];
int right = index[em + 1];
int furt = index[em + 2];
/*mark the furthest point */
sel[furt] = 1;
nexp--;
/* consider left and right segment */
mid = get_furthest(Points, left, furt, with_z, &d);
if (d > thresh) {
binary_heap_push(d, indices, &pq);
index[indices++] = left;
index[indices++] = furt;
index[indices++] = mid;
}
mid = get_furthest(Points, furt, right, with_z, &d);
if (d > thresh) {
binary_heap_push(d, indices, &pq);
index[indices++] = furt;
index[indices++] = right;
index[indices++] = mid;
}
}
/* copy selected points */
int selected = 0;
for (i = 0; i < n; i++) {
if (sel[i]) {
Points->x[selected] = Points->x[i];
Points->y[selected] = Points->y[i];
Points->z[selected] = Points->z[i];
selected++;
}
}
G_free(sel);
G_free(index);
binary_heap_free(&pq);
Points->n_points = selected;
return Points->n_points;
}
|