File: v.net.alloc.html

package info (click to toggle)
grass 8.4.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 277,040 kB
  • sloc: ansic: 460,798; python: 227,732; cpp: 42,026; sh: 11,262; makefile: 7,007; xml: 3,637; sql: 968; lex: 520; javascript: 484; yacc: 450; asm: 387; perl: 157; sed: 25; objc: 6; ruby: 4
file content (226 lines) | stat: -rw-r--r-- 8,665 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
<h2>DESCRIPTION</h2>

<em>v.net.alloc</em> allocates subnets for nearest centers. Center
nodes must be opened (costs &gt;= 0). Costs of center nodes are used in
the calculation.
<p>
Costs may be either line lengths, or attributes saved in a
database table. These attribute values are taken as costs of whole
segments, not as costs to traverse a length unit (e.g. meter) of the
segment. For example, if the speed limit is 100 km / h, the cost to
traverse a 10 km long road segment must be calculated as
<br>
length / speed = 10 km / (100 km/h) = 0.1 h.
<br>
Supported are cost assignments for both arcs and nodes,
and also different costs for both directions of a vector line.
For areas, costs will be calculated along boundary lines.
<p>
The input vector needs to be prepared with <em>v.net operation=connect</em>
in order to connect points representing center nodes to the network.
<p>
The nearest center can be determined using either costs from the
nearest center or costs to the nearest center with option
<b>method</b>. See example below.
<p>
By default, the category value of the nearest center is used as
category value for output lines. With the <b>-u</b> flag, output lines
become unique categories and an attribute table is created with the
fields <em>cat, ocat, center</em>. The <em>ocat</em> field holds the
original line category in <b>arc_layer</b> and the <em>center</em>
field holds the center category in <b>node_layer</b>. Additionally,
original line categories are copied from the input <b>arc_layer</b> to
layer 2 in the output, together with any attribute table.
<p>
Application of flag <b>-t</b> enables a turntable support. This flag
requires additional parameters <b>turn_layer</b> and
<b>turn_cat_layer</b> that are otherwise ignored. The turntable allows
to model e.g. traffic code, where some turns may be prohibited. This
means that the input layer is expanded by turntable with costs of every
possible turn on any possible node (intersection) in both directions.
Turntable can be created by the <em><a href="v.net.html">v.net</a></em>
module. For more information about turns in the vector network analyses
see
<a href="https://grasswiki.osgeo.org/wiki/Turns_in_the_vector_network_analysis">wiki page</a>.

<h2>NOTES</h2>

Nodes and arcs can be closed using cost = -1.
<p>
Center nodes can also be assigned to vector nodes using
<em><a href="wxGUI.vdigit.html">wxGUI vector digitizer</a></em>.

<h2>EXAMPLES</h2>

<p>1. Subnetwork allocation using distance:
<p><img src="v_net_alloc.png" alt="v.net.alloc example using distance" border="1">
<br>
<p>2. Subnetwork allocation using traveling time:
<p><img src="v_net_alloc_time.png" alt="v.net.alloc example using time" border="1">
<br>

<p>Example 1: <em>Calculating subnets for 3 center nodes using distances</em>
<div class="code"><pre>
# Spearfish

# center nodes:
echo "591235.5|4926306.62|1
596591.8|4917042.5|2
602722.9|4923544.2|3" | v.in.ascii in=- out=centernodes

g.copy vect=roads,myroads

# connect points to network
v.net myroads points=centernodes out=myroads_net op=connect thresh=200

# allocate, specifying range of center cats (easier to catch all):
v.net.alloc myroads_net out=myroads_net_alloc center_cats=1-100000 node_layer=2

# report categories
v.category myroads_net_alloc option=report
</pre></div>

To display the result, run for example:

<div class="code"><pre>
# show result
g.region vector=myroads_net
d.mon x0
d.vect myroads_net layer=1

# the result has to be selected by category number of the relevant node:
d.vect myroads_net_alloc cat=1 col=red layer=1
d.vect myroads_net_alloc cat=2 col=green layer=1
d.vect myroads_net_alloc cat=3 col=yellow layer=1

# center nodes
d.vect myroads_net col=red icon=basic/triangle fcol=green size=12 layer=2
</pre></div>

<p>Example 2: <em>Calculating subnets for 3 center nodes using traveling time</em><br>

<div class="code"><pre>
# Spearfish

# center nodes:
echo "591235.5|4926306.62|1
596591.8|4917042.5|2
602722.9|4923544.2|3" | v.in.ascii in=- out=centernodes

g.copy vect=roads,myroads

# create lines map connecting points to network
v.net myroads points=centernodes out=myroads_net op=connect thresh=500 arc_layer=1 node_layer=2

# set up costs

# create unique categories for each road in layer 3
v.category in=myroads_net out=myroads_net_time opt=add cat=1 layer=3 type=line

# add new table for layer 3
v.db.addtable myroads_net_time layer=3 col="cat integer,label varchar(43),length double precision,speed double precision,cost double precision,bcost double precision"

# copy road type to layer 3
v.to.db myroads_net_time layer=3 qlayer=1 opt=query qcolumn=label columns=label

# upload road length in miles
v.to.db myroads_net_time layer=3 type=line option=length col=length unit=miles

# set speed limits in miles / hour
v.db.update myroads_net_time layer=3 col=speed val="5.0"
v.db.update myroads_net_time layer=3 col=speed val="75.0" where="label='interstate'"
v.db.update myroads_net_time layer=3 col=speed val="75.0" where="label='primary highway, hard surface'"
v.db.update myroads_net_time layer=3 col=speed val="50.0" where="label='secondary highway, hard surface'"
v.db.update myroads_net_time layer=3 col=speed val="25.0" where="label='light-duty road, improved surface'"
v.db.update myroads_net_time layer=3 col=speed val="5.0" where="label='unimproved road'"

# define traveling costs as traveling time in minutes:

# set forward costs
v.db.update myroads_net_time layer=3 col=cost val="length / speed * 60"
# set backward costs
v.db.update myroads_net_time layer=3 col=bcost val="length / speed * 60"

# subnetwork allocation with fastest paths
v.net.alloc in=myroads_net_time arc_layer=3 node_layer=2 arc_column=cost arc_backward_column=bcost out=myroads_net_alloc_time center_cats=1-3
</pre></div>

To display the result, run for example:

<div class="code"><pre>
# show result
g.region vector=myroads_net
d.mon x0
d.vect myroads_net type=line layer=1

# the result has to be selected by category number of the relevant node:
d.vect myroads_net_alloc_time cat=1 col=red layer=1
d.vect myroads_net_alloc_time cat=2 col=green layer=1
d.vect myroads_net_alloc_time cat=3 col=yellow layer=1

# center nodes
d.vect myroads_net_time col=red icon=basic/triangle fcol=green size=12 type=point layer=2
</pre></div>

<p>Example 3: <em>Differences between costs from centers and costs to centers</em><br>

Each lane of the two-lane road is a one-way road.
<p>1. Subnetwork allocation from centers:
<p><img src="v_net_alloc_from_centers.png" alt="v.net.alloc example from centers" border="1">
<br>
A center reaches any point following the one-way lanes.
<p>2. Subnetwork allocation to centers:
<p><img src="v_net_alloc_to_centers.png" alt="v.net.alloc example to centers" border="1">
<br>
Any node reaches reaches the nearest center following the one-way lanes.
<p>
In case of an accident, the ambulance should come from the nearest
'from' hospital and go to the nearest 'to' hospital.

<div class="code"><pre>
# North Carolina

# center nodes are hospitals:
# connect hospitals to streets as layer 2
v.net input=streets_wake points=hospitals output=streets_hospitals operation=connect thresh=400 arc_layer=1 node_layer=2
v.to.db map=streets_hospitals layer=1 type=line option=cat columns=cat

# close oneway roads
v.db.update map=streets_hospitals column=TF_COST value=-1 where="ONE_WAY = 'FT'"
v.db.update map=streets_hospitals column=FT_COST value=-1 where="ONE_WAY = 'TF'"

# add costs to newly created lines
v.db.update map=streets_hospitals column=TF_COST value=0 where="cat &gt; 49746"
v.db.update map=streets_hospitals column=FT_COST value=0 where="cat &gt; 49746"

# from centers
v.net.alloc in=streets_hospitals out=streets_hospitals_alloc_from center_cats=1-10000 arc_column=FT_COST arc_backward_column=TF_COST

# to centers
v.net.alloc in=streets_hospitals out=streets_hospitals_alloc_to method=to center_cats=1-10000 arc_column=FT_COST arc_backward_column=TF_COST
</pre></div>

<h2>SEE ALSO</h2>

<em>
<a href="d.path.html">d.path</a>,
<a href="v.net.html">v.net</a>,
<a href="v.net.iso.html">v.net.iso</a>,
<a href="v.net.path.html">v.net.path</a>,
<a href="v.net.steiner.html">v.net.steiner</a>,
<a href="v.net.salesman.html">v.net.salesman</a>
</em>

<h2>AUTHORS</h2>

Radim Blazek, ITC-Irst, Trento, Italy<br>
Documentation: Markus Neteler, Markus Metz

<h3>TURNS SUPPORT</h3>

The turns support was implemnented as part of GRASS GIS turns cost project at Czech Technical University in Prague, Czech Republic.
Eliska Kyzlikova, Stepan Turek, Lukas Bocan and Viera Bejdova participated at the project.

Implementation: Stepan Turek
Documentation: Lukas Bocan
Mentor: Martin Landa