File: frame-pp_vector.c

package info (click to toggle)
gravit 0.5.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 10,416 kB
  • sloc: ansic: 6,841; makefile: 63; sh: 43
file content (251 lines) | stat: -rw-r--r-- 7,557 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*

Gravit - A gravity simulator
Copyright 2003-2005 Gerald Kaszuba

Gravit is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

Gravit is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Gravit; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

*/

#include "gravit.h"

#ifdef _OPENMP
// experimental OMP support
#include <omp.h> // VC has to include this header to build the correct manifest to find vcom.dll or vcompd.dll
#endif

/* ************************************************************************** */
/* How to allocate memory with 16byte alignment?                              */
/* ************************************************************************** */
#ifdef WIN32

    // Windows: use _aligned_malloc
    #include <stdlib.h>
    #include <malloc.h>

    #if defined(__MINGW32__) || defined(mingw32) || defined(MINGW)
        // MinGW
        #define MALLOC_ALIGNED(target, size, alignment) {target =  (float*) __mingw_aligned_malloc(size, alignment);}
        #define FREE_ALIGNED(target)                    {__mingw_aligned_free(target);}
    #else
        // Microsoft
        #define MALLOC_ALIGNED(target, size, alignment) {target =  (float*) _aligned_malloc(size, alignment);}
        #define FREE_ALIGNED(target)                    {_aligned_free(target);}
    #endif

#else

    // linux, unix, MacOS:  use (posix_)memalign
    #include <stdlib.h>
    //#include <malloc.h>

    //#if defined(HAVE_MEMALIGN) && !defined(HAVE_WORKING_POSIX_MEMALIGN)
    #if defined(HAVE_MEMALIGN)
        #include <malloc.h>

        // use memalign -- seems this is the best choice for most unix/linux versions
        #define MALLOC_ALIGNED(target, size, alignment) {target =  (float*) memalign(alignment, size);}
        #define FREE_ALIGNED(target)                    {free(target);}

    #else

        // all others use posix_memalign
        #define MALLOC_ALIGNED(target, size, alignment) {if (posix_memalign( (void **) &(target), alignment, size) != 0) target=NULL;}
        #define FREE_ALIGNED(target)                    {free(target);}

    #endif

#endif
/* ************************************************************************** */



// __restrict__ tell the compiler that two pointer will not point to the same location
// if your compiler complains, just remove __restrict__

#ifdef _MSC_VER
#define __restrict__ __restrict
//#define __restrict__ __declspec(restrict)
//#define __restrict__
#endif




typedef struct {
    float * __restrict__ x;
    float * __restrict__ y;
    float * __restrict__ z;
    float * __restrict__ mass;
} particle_vectors;

typedef struct {
    float * __restrict__ x;
    float * __restrict__ y;
    float * __restrict__ z;
} acc_vectors;




/*  Optimizations:
    ===============
    * before processing, copy particle data to vector-friendly arrays
    * delay multiplication with G
    * after processing, write back results
*/


//#define MIN_STEP2 0.05

HOT
static void do_processFramePP(particle_vectors pos, acc_vectors accel,
                              int start, int amount) {
    int i;
    //int particles_max = state.particleCount;

    // apply gravity to every specified velocity
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic, 256)
#endif
    for (i = start; i < amount; i++) {
        //VectorNew(p1_pos);
        float p1_pos_x;
        float p1_pos_y;
        float p1_pos_z;
        float p1_mass;

        //VectorNew(p1_vel);
        //VectorZero(p1_vel);
        float p1_accel_x = 0.0f;
        float p1_accel_y = 0.0f;
        float p1_accel_z = 0.0f;

        int j;

        p1_pos_x = pos.x[i];
        p1_pos_y = pos.y[i];
        p1_pos_z = pos.z[i];
        p1_mass   = pos.mass[i];


#ifdef __INTEL_COMPILER
#pragma vector always
#pragma vector aligned
#endif
        for (j = 0; j < i; j++) {
            //VectorNew(dv);
            float dv_x;
            float dv_y;
            float dv_z;
            float inverseSquareDistance;
            float force;

            dv_x = p1_pos_x - pos.x[j];
            dv_y = p1_pos_y - pos.y[j];
            dv_z = p1_pos_z - pos.z[j];

            // get distance^2 between the two
            inverseSquareDistance  = dv_x * dv_x;
            inverseSquareDistance += dv_y * dv_y;
            inverseSquareDistance += dv_z * dv_z;
            //inverseSquareDistance +=  + MIN_STEP2;

            force = p1_mass * pos.mass[j] / inverseSquareDistance;

            // sum of accelerations for p1
            p1_accel_x += dv_x * force;
            p1_accel_y += dv_y * force;
            p1_accel_z += dv_z * force;

            // add acceleration for p2 (with negative sign, as the direction is inverted)
            accel.x[j] -= dv_x * force;
            accel.y[j] -= dv_y * force;
            accel.z[j] -= dv_z * force;

        }

        // write back buffered acceleration of p1
        accel.x[i] += p1_accel_x;
        accel.y[i] += p1_accel_y;
        accel.z[i] += p1_accel_z;

    }

}



void processFramePP(int start, int amount) {
    particle_vectors pos;
    acc_vectors accel;
    particle_t * __restrict__ framebase = state.particleHistory + state.particleCount*state.frame;
    particleDetail_t * __restrict__ framedetail = state.particleDetail;

    int i;
    int particles_max;
    particles_max = state.particleCount;


    // create arrays, aligned to 16 bytes

    MALLOC_ALIGNED( pos.x, sizeof(float)*(particles_max + 16), 16);
    MALLOC_ALIGNED( pos.y, sizeof(float)*(particles_max + 16), 16);
    MALLOC_ALIGNED( pos.z, sizeof(float)*(particles_max + 16), 16);
    MALLOC_ALIGNED( pos.mass, sizeof(float)*(particles_max + 16), 16);
    //memset(pos.x, 0, sizeof(float) * (particles_max + 16));
    //memset(pos.y, 0, sizeof(float) * (particles_max + 16));
    //memset(pos.z, 0, sizeof(float) * (particles_max + 16));
    //memset(pos.mass, 0, sizeof(float) * (particles_max + 16));
    MALLOC_ALIGNED( accel.x, sizeof(float)*(particles_max + 16), 16);
    MALLOC_ALIGNED( accel.y, sizeof(float)*(particles_max + 16), 16);
    MALLOC_ALIGNED( accel.z, sizeof(float)*(particles_max + 16), 16);
    memset(accel.x, 0, sizeof(float) * (particles_max + 16));
    memset(accel.y, 0, sizeof(float) * (particles_max + 16));
    memset(accel.z, 0, sizeof(float) * (particles_max + 16));


    // copy frame data to vector-friendly arrays
    for (i=0; i<particles_max; i++) {
        pos.x[i] = framebase[i].pos[0];
        pos.y[i] = framebase[i].pos[1];
        pos.z[i] = framebase[i].pos[2];
        pos.mass[i] = state.particleDetail[i].mass;
    }


    // calculate new accelerations
    do_processFramePP(pos, accel, start, amount);


    // write back results
    for (i=0; i<particles_max; i++) {
        framedetail[i].accel[0] += accel.x[i] * state.g;
        framedetail[i].accel[1] += accel.y[i] * state.g;
        framedetail[i].accel[2] += accel.z[i] * state.g;
    }


    // clean up
    FREE_ALIGNED(pos.x);
    FREE_ALIGNED(pos.y);
    FREE_ALIGNED(pos.z);
    FREE_ALIGNED(pos.mass);

    FREE_ALIGNED(accel.x);
    FREE_ALIGNED(accel.y);
    FREE_ALIGNED(accel.z);

}