
Graphite Compiler Debug Files, Page 1 of 6
Sharon Correll, 03-Oct-2011

Graphite Compiler Debug Files

Sharon Correll

Version 4

Last modified: 3 October 2011

1 Introduction
The Graphite compiler outputs several text files that can be helpful in the process of developing a
Graphite font. Specifically, if the renderer is giving unexpected results, the GDL programmer can
examine these debugger files to see whether the compiler is generating the expected output.
Together these files create a textual representation of the bulk of the information in the Graphite
font tables.

The compiler generates these files when the /d switch is passed as the first argument.

2 Parse tree: dbg_parsetree.txt
This file shows a parse tree reflecting the syntax of the GDL program.

The line numbers refer not to the original source code but to the file ‘$_temp.gdl’, an integrated
source file resulting from running the preprocessor over the program and handling the #define
and #include statements.

3 Glyph attributes: dbg_glyphattrs.txt
This file contains the value of all the glyph attributes for all the glyphs in the font.

The first section contains a list of the internal IDs assigned to all the glyph attributes. This list
includes the system-defined glyph attributes (breakweight, directionality, *actualForPsuedo*) as
well as the programmer-defined attributes. These values can be useful for interpreting the
PushGlyphAttr and PushAttToGlyphAttr commands in ‘dbg_enginecode.txt’.

The second section lists all the glyph attributes whose values are non-zero. Any unlisted attribute
can be assumed to have the value 0.

The “*actualForPsuedo*” attribute is a special system-defined attribute that contains the ID
number of the glyph that should be used for the final rendering of any pseudo-glyph. This
attribute is zero for all glyphs that are not psuedo-glyphs.

All values that are glyphs metrics or calculated from glyph metrics are based on the design units
of the font (the font’s em-square).

Implementational note: any gpoint attribute whose value is actually 0 will have a special value
recorded, since the value 0 is used to mean “not defined.” This special value is shown in the
‘dbg_glyphattrs.txt’ file as the word “zero.”

Debugging Tip: the dbg_glyphattrs.txt file shows only glyph attributes, not glyph metrics. To
include glyph metrics in the file, define a glyph attribute that is exactly equal to the glyph metric
of interest.

Graphite Compiler Debug Files, Page 2 of 6
Sharon Correll, 03-Oct-2011

4 Character/glyph mappings: dbg_cmap.txt
This file shows the effect of mapping a Unicode character to a glyph ID. This is equivalent to the
mapping in the font’s CMAP table, with the exception of pseudo-glyphs which are given a
mapping generated by the Graphite compiler.

The first section of the file contains the character-to-glyph mappings, and the second section lists
the reverse mappings. In both sections pseudo-glyphs are marked. All values are shown in hex.

Items marked “[auto-pseudo]” are pseudo-glyphs that are created by virtue of the fact that there
are duplicate mappings to a glyph in the font’s CMAP. (This behavior can be turned off by the
directive AutoPseudo = false in your GDL program; see sections 3.2.1 and 7.3 in the GDL
documentation.) Any pseudo-glyphs that are mapping Unicode values not present in the font’s
CMAP are labeled “[pseudo; not in cmap]”.

For pseudo-glyphs, this file reflects only the initial mapping from Unicode character to glyph.
The *actualForPseudo* glyph attribute contains the final glyph ID to use for rendering the
pseudo-glyph; the value of this attribute is shown in the ‘dbg_glyphattrs.txt’ file. (Some pseudo-
glyphs do not have a mapping from Unicode character to glyph, but are only used for internal
processing. They will not be listed in the ‘dbg_cmap.txt’ file but will have a value for the
actualForPseudo glyph attribute.)

The second section of the file shows two special glyphs that are used for internal processing. The
item labeled [line-break] is a special glyph that is used to indicate the line-break “character”; it
corresponds the “#” item in GDL rules. The item labeled [phantom] is a non-existent glyph that is
created by the compiler to facilitate rule mapping.

5 Rule precedence: dbg_ruleprec.txt
Since it is often difficult in a complicated pass with many rules to determine easily what the
precedence for the rules are, the ‘dbg_ruleprec.txt’ is available to help with this task. This file
lists the rules for each pass in the order of their precedence. When multiple rules are matched by
the finite state machine, it is this precedence that determines which rule is actually fired.

Note that a single rule in the source code may correspond to multiple rules in this file, since rules
are expanded by the compiler to account for optional items. The rule number (e.g., RULE 3.7)
corresponds to the number in the ‘dbg_fsm.txt’ file and also in the ‘gr_xductn.log’ file that is
output by the Graphite engine. The file indicates the line and file of the source code for each rule,
and shows a simplified print-out of the rule.

The rules may be shown in a somewhat different form than they were expressed in the GDL
program, as follows:
 The rules are abbreviated; in particular the values of assignments to slot attributes are not all

listed.
 Some rules may have ANY classes inserted at the beginning of the context. When ANY

classes are inserted, you will notice that the effect is that each rule in a given pass has the
same number of items before the first underscore in the context. (This is an implementational
trick to ensure that the engine has a consistent reference point from which to begin matching
the rules.)

 Expressions are arithmetically simplified, with constant values replacing glyph attributes.
 Values that are in terms of em-units will be scaled to show the em-units of the font.
 Any effects of #define commands are reflected in the form shown in the debug file (for

instance, “user1” will be shown instead of the original slot attribute name, if any).

Graphite Compiler Debug Files, Page 3 of 6
Sharon Correll, 03-Oct-2011

6 Finite state machines: dbg_fsm.txt
This file shows the finite state machines that are generated for each pass. The finite state
machines are used to match the input and determine which rules to fire.

For each pass, the file first indicates the column to which each glyph is assigned. Following that
is the FSM table itself. The rows in the table are the states, and each element in the table is the
state the machine transitions to when an item assigned to the given column is encountered. A
value of zero means that no match occurred; the machine has “jammed.”

The state number is followed by a count of the number of slots that have been matched at this
state. Each state also contains an indication of which rules are in the process of being matched,
and which have been fully matched (the “Success” states). When the FSM runs, it keeps a list of
all the success states that have been encountered. When the machine “jams,” the rules associated
with these states are candidates for firing. The longest rules are tried first, in the order they
appeared in the source code; the first one whose constraints succeed is the rule that is fired.

The rules for the pass are listed following the FSM table. Keep in mind that there is not a one-to-
one correspondence between the rules in the source code and those generated by the compiler.
Specifically if a source code rule contains optional items, there will be multiple corresponding
rules generated by the compiler. The overall order of the rules, however, is unchanged. You may
need to carefully compare the final rules shown in this file with the source code to determine the
exact correspondences.

The rules may be written in a somewhat different form than they were expressed in the GDL
program. See the section on rule precedence above for more details.

If you are having trouble determining why a rule is not firing as expected, this file may be
helpful. On a piece of scrap paper, write out the underlying characters in the problematic text, and
below them write the glyph IDs (from the ‘dbg_cmap.txt’ file) followed by the column
assignments for each. Starting at the critical spot in the text, step through the FSM table,
transitioning to the next state in the table for each successive column in your input. (The slots-
matched counter should increase by one at each state.) Keep track of each successful rule you
encounter. When you hit a zero element in the table, the machine has “jammed.” Compare the
order and length of the successful rules to make sure that an undesirable rule isn’t being fired
instead of the one you expected (use the ‘dbg_ruleprec.txt’ file to determine the precedence of the
matched rules).

However, keep in mind that your list of input glyphs may not be in the state you expect, due to
previous processing in this pass or a previous pass, and that may be the source of the problem. To
do a really thorough debugging job, you may need to start with the beginning of the text at the
first pass and work your way all the way through, modifying the glyph list as you go according to
the rules that fire.

7 Engine code: dbg_enginecode.txt
This file shows the internal code that is generated corresponding to the constraints and the effects
of firing the rules. This internal code is in the form of a stack machine. See ‘Stack Machine
Commands.doc’ for a description of the commands.

The file shows an abbreviated form of the rule, followed by the action code (the effects of
running the rule) and the constraint code (the cumulative tests contained in the relevant –if–
statements and in-rule tests).

Graphite Compiler Debug Files, Page 4 of 6
Sharon Correll, 03-Oct-2011

Again, there is not a one-to-one correspondence between the rules as listed here and those in the
source code (although the rule numbers are the same as what is shown in the ‘dbg_fsm.txt’ file).
The numbers of the passes in this file, however, do correspond to the numbers in the source code.
Pass 0 indicates the unnumbered pass, permitted when there is only one pass in a table. See the
section on the rule precedence file for a description of how the rules are written.

Several of the engine code commands (PushGlyphAttr and PushAttToGlyphAttr) have the effect
of pushing the values of glyph attributes on the stack. A translation between the glyph attribute
internal ID number and the original name can be found in the ‘dbg_glyphattr.txt’ file.

Other commands (PutSubs and PutGlyph) have the effect of substituting one glyph for another.
These commands use class numbers, which are specified in the ‘dbg_classes.txt’ file.

Note that the PushShort and PushLong commands show their arguments as decimal equivalents
of the 8-bit bytes that make up the value, with the most significant byte shown first. So the
number 11509 is written as “44 –11” (since 11509 = x2CF5, x2C = 44 = and xF5 = –11).

8 Substitution classes: dbg_classes.txt
This file shows classes that are used for substitution in the rules in the substitution table. Each
class has a number, which corresponds to the numbers you can find in the dbg_enginecode.txt
file, as arguments to the PutSubs and PutGlyph commands.

The classes are listed in two groups. The first group is labeled “LINEAR (OUTPUT) CLASSES.”
These are the classes that appear in the right-hand or output side of the rules. These classes
consist of simply a list of glyphs. They are organized into groups of 10 so that it is fairly easy for
you to determine the index of any member of the class. This group also includes classes that
appear on the left-hand or input side of the rules but have only one member.

The second group of classes are labeled “INDEX (INPUT) CLASSES.” These classes appear in
the left-hand or input side of the rules and contain more than one element. You will notice that
the list of glyphs for each class is sorted by glyph number and each glyph is followed by an index.
When the given glyph is encountered in the input, the associated index is used to determine the
corresponding glyph from the output class to substitute in place of the original glyph.

Note that some classes may be used in both the left- and right-hand sides of substitution rules, in
which case they will appear in both the input and output class lists.

Example. Suppose you have a rule that replaces lower-case vowels (a, e, i, o, u) with upper-case
equivalents (A, E, I, O, U). This rule might be represented in the ‘dbg_enginecode.txt’ file as
follows:

Rule 1.0: clsLowerVowel > clsUpperVowel;

ACTIONS
PutSubs 0 10 6
Next
RetZero

The PutSubs 0 10 6 statement processes the current, “zeroth” (in this case, only) slot by
replacing a glyph from class #10 with the matching one from class #6.

Now suppose the font assigns glyphs as shown in the table below.

Graphite Compiler Debug Files, Page 5 of 6
Sharon Correll, 03-Oct-2011

a 0x0021 A 0x0053

e 0x0025 E 0x0057

i 0x0029 I 0x005B

o 0x002F O 0x0061

u 0x0035 U 0x0067

The ‘dbg_classes.txt’ file would contain the following definitions for the classes:

LINEAR (OUTPUT) CLASSES

...

Class #6: clsUpperVowel
0: 0x0053 0x0057 0x005B 0x0061 0x0067

...

INDEXED (INPUT) CLASSES

...

Class #10: clsLowerVowel
0x0021 : 0 0x0025 : 1 0x0029 : 2 0x002F : 3 0x0035 : 4

The glyph IDs are hypothetical, but this is in effect saying that “a” is assigned index 0, which
corresponds to “A” in the clsUpperVowel class;“e” is assigned index 1, corresponding to “E”;
etc. (In this case the glyphs in the input class happen to be in sorted order, but keep in mind that
this is not always the case.)

9 Graphite2 debugger file: <fontfilename>.gdx
This file is intended to be used by the engine to support run-time debugging. This functionality
has not yet been implemented and will only be available in the Graphite2 engine. It uses an XML
syntax, a rough example of which is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<graphite>

 <glyphAttrs>
 <glyphAttr name="someAttrName"> attrId="0" type=”gid”
 inFile="gdlFileName.gdl" atLine="47" />
 …more glyph attributes…
 </glyphAttrs>

 <glyphs>
 <glyph glyphid="0">
 <glyphAttrValue name="someAttrName" value="123" />
 </glyph>
 …more glyphs…
 </glyphs>

 <classes>

Graphite Compiler Debug Files, Page 6 of 6
Sharon Correll, 03-Oct-2011

 <class name="someClassName" >
 <member glyphid="23" index="0"
 inFile="gdlFileName.gdl" atLine="328" />
 <member glyphid="26" index="1"
 inFile="gdlFileName.gdl" atLine="328" />
 …more class members…
 </class>
 …more classes…
 </classes>

 <features>
 <feature name="lang" featureID="1" index="0" />
 <feature name="someFeature" featureID="somf" index="1" />
 …more features…
 </features>

 <rules>
 <pass table="substitution" index="1" >
 <rule id="1.0" inFile="gdlFileName.gdl" atLine="351"
 prettyPrint="class1 > class2 / _ ^ class2;" />
 <lhs>
 <lhsSlot className="class1" slotIndex="1" />
 </lhs>
 <rhs>
 <rhsSlot className="class2" slotIndex="1" />
 </rhs>
 <context>
 <contextSlot type="place-holder" rhsIndex="1" >
 <caret />
 <contextSlot type="class" className="class3"
 rhsIndex="2" >
 </context>
 </rule>
 …more substitution rules…
 </pass>
 …more passes…
 </rules>

</graphite>

10 Revision History
1. 26-April-2000: First draft by Sharon Correll.
2. 26-Jan-2001. Revised to discuss ANY.
3. 26-Feb-2003. Added discussion of dbg_classes and dbg_ruleprec files.
4. 28-April-2003. Enhanced discussion of dbg_cmap file.
5. 8-Dec-2006. Minor changes.
6. 3-Oct-2011. Added XML debugger file.

11 File Name
Compiler Debug Files.doc

