1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
/**
* <b>SOFTWARE RIGHTS</b>
* <p>
* ANTLR 2.6.0 MageLang Insitute, 1998
* <p>
* We reserve no legal rights to the ANTLR--it is fully in the
* public domain. An individual or company may do whatever
* they wish with source code distributed with ANTLR or the
* code generated by ANTLR, including the incorporation of
* ANTLR, or its output, into commerical software.
* <p>
* We encourage users to develop software with ANTLR. However,
* we do ask that credit is given to us for developing
* ANTLR. By "credit", we mean that if you use ANTLR or
* incorporate any source code into one of your programs
* (commercial product, research project, or otherwise) that
* you acknowledge this fact somewhere in the documentation,
* research report, etc... If you like ANTLR and have
* developed a nice tool with the output, please mention that
* you developed it using ANTLR. In addition, we ask that the
* headers remain intact in our source code. As long as these
* guidelines are kept, we expect to continue enhancing this
* system and expect to make other tools available as they are
* completed.
* <p>
* The ANTLR gang:
* @version ANTLR 2.6.0 MageLang Insitute, 1998
* @author Terence Parr, <a href=http://www.MageLang.com>MageLang Institute</a>
* @author <br>John Lilley, <a href=http://www.Empathy.com>Empathy Software</a>
* @author <br><a href="mailto:pete@yamuna.demon.co.uk">Pete Wells</a>
*/
#include "Antlr/AST.hpp"
#include <cassert>
AST::AST(ASTNode* n)
{
node=n;
}
AST::~AST()
{
//int nLine = node->debug(); // debugger
delete node;
}
const ASTNode* AST::getNode() const
{
return node;
}
ASTNode* AST::getNode()
{
return node;
}
void AST::addChild(RefAST c)
{
if (c==0)
return;
RefAST tmp=down;
if (tmp) {
while (tmp->right)
tmp=tmp->right;
tmp->right=c;
} else {
down=c;
}
}
void AST::doWorkForFindAll(std::vector<const AST*>& v,
RefAST target,bool partialMatch) const
{
// Start walking sibling lists, looking for matches.
for (const AST* sibling=this;
sibling;
sibling=sibling->getNextSibling())
{
if ( (partialMatch && sibling->equalsTreePartial(target)) ||
(!partialMatch && sibling->equalsTree(target)) ) {
v.push_back(sibling);
}
/*
if ( partialMatch ) if ( sibling->equalsTreePartial(target) ) {
// subtree rooted at 'sibling' exact or partial equals 'target'
v.push_back(sibling);
}
if ( !partialMatch ) if ( sibling->equalsTree(target) ) {
// subtree rooted at 'sibling' exact or partial equals 'target'
v.push_back(sibling);
}
*/
// regardless of match or not, check any children for matches
if ( sibling->getFirstChild() ) {
(sibling->getFirstChild())->doWorkForFindAll(v, target, partialMatch);
}
}
}
/** Is node t equal to this? */
bool AST::equals(const AST* t) const
{
if (!t)
return false;
return (getText() == t->getText()) && (getType() == t->getType());
}
/** Is t an exact structural and equals() match of this tree. The
* 'this' reference is considered the start of a sibling list.
*/
bool AST::equalsList(const AST* t) const
{
// the empty tree is not a match of any non-null tree.
if (!t)
return false;
// Otherwise, start walking sibling lists. First mismatch, return false.
const AST* sibling=this;
for (;sibling && t;
sibling=sibling->getNextSibling(), t=t->getNextSibling()) {
// as a quick optimization, check roots first.
if (!sibling->equals(t))
return false;
// if roots match, do full list match test on children.
if (sibling->getFirstChild()) {
if (!sibling->getFirstChild()->equalsList(t->getFirstChild()))
return false;
}
// sibling has no kids, make sure t doesn't either
else if (t->getFirstChild())
return false;
}
if (!sibling && !t)
return true;
// one sibling list has more than the other
return false;
}
/** Is 'sub' a subtree of this list?
* The siblings of the root are NOT ignored.
*/
bool AST::equalsListPartial(const AST* sub) const
{
// the empty tree is always a subset of any tree.
if (!sub)
return true;
// Otherwise, start walking sibling lists. First mismatch, return false.
const AST* sibling=this;
for (;sibling && sub;
sibling=sibling->getNextSibling(), sub=sub->getNextSibling()) {
// as a quick optimization, check roots first.
if (!sibling->equals(sub))
return false;
// if roots match, do partial list match test on children.
if (sibling->getFirstChild())
if (!sibling->getFirstChild()->equalsListPartial(sub->getFirstChild()))
return false;
}
if (!sibling && sub)
// nothing left to match in this tree, but subtree has more
return false;
// either both are null or sibling has more, but subtree doesn't
return true;
}
/** Is tree rooted at 'this' equal to 't'? The siblings
* of 'this' are ignored.
*/
bool AST::equalsTree(const AST* t) const
{
// check roots first
if (!equals(t))
return false;
// if roots match, do full list match test on children.
if (getFirstChild()) {
if (!getFirstChild()->equalsList(t->getFirstChild()))
return false;
}
// sibling has no kids, make sure t doesn't either
else if (t->getFirstChild())
return false;
return true;
}
/** Is 'sub' a subtree of the tree rooted at 'this'? The siblings
* of 'this' are ignored.
*/
bool AST::equalsTreePartial(const AST* sub) const
{
// the empty tree is always a subset of any tree.
if (!sub)
return true;
// check roots first
if (!equals(sub))
return false;
// if roots match, do full list partial match test on children.
if (getFirstChild())
if (!getFirstChild()->equalsListPartial(sub->getFirstChild()))
return false;
return true;
}
/** Walk the tree looking for all exact subtree matches. Return
* an ASTEnumerator that lets the caller walk the list
* of subtree roots found herein.
*/
std::vector<const AST*> AST::findAll(RefAST target) const
{
std::vector<const AST*> roots;
// the empty tree cannot result in an enumeration
if (target) {
doWorkForFindAll(roots,target,false); // find all matches recursively
}
return roots;
}
/** Walk the tree looking for all subtrees. Return
* an ASTEnumerator that lets the caller walk the list
* of subtree roots found herein.
*/
std::vector<const AST*> AST::findAllPartial(RefAST target) const
{
std::vector<const AST*> roots;
// the empty tree cannot result in an enumeration
if (target) {
doWorkForFindAll(roots,target,true); // find all matches recursively
}
return roots;
}
RefAST AST::getFirstChild() const
{
return down;
}
RefAST AST::getNextSibling() const
{
return right;
}
std::string AST::getText() const
{
if (node)
return node->getText();
else
return "";
}
int AST::getType() const
{
assert(node);
return node->getType();
}
void AST::initialize(int t,const std::string& txt)
{
assert(node);
node->initialize(t,txt);
}
void AST::initialize(const AST* t)
{
assert(node);
node->initialize(t);
}
void AST::initialize(RefToken t)
{
assert(node);
node->initialize(t);
}
void AST::removeChildren()
{
down=nullAST;
}
void AST::setFirstChild(RefAST c)
{
down=c;
}
void AST::setNextSibling(RefAST n)
{
right=n;
}
void AST::setText(const std::string& txt)
{
assert(node);
node->setText(txt);
}
void AST::setType(int type)
{
assert(node);
node->setType(type);
}
std::string AST::toString() const
{
return getText();
}
std::string AST::toStringList() const
{
std::string ts="";
if (getFirstChild()) {
ts+=" ( ";
ts+=toString();
ts+=getFirstChild()->toStringList();
ts+=" )";
} else {
ts+=" ";
ts+=toString();
}
if (getNextSibling())
ts+=getNextSibling()->toStringList();
return ts;
}
std::string AST::toStringTree() const
{
//const AST* t=this;
std::string ts="";
if (getFirstChild()) {
ts+=" ( ";
ts+=toString();
ts+=getFirstChild()->toStringList();
ts+=" )";
} else {
ts+=" ";
ts+=toString();
}
return ts;
}
// this is nasty, but it makes the code generation easier
RefAST nullAST;
// Sharon added:
// This approach handles siblings iteratively instead of one long recursive chain,
// to avoid stack overflows. When doSiblings == true, recipient is the first sibling in a chain.
void AST::iterativeRemoveChildren(bool doSiblings, int level)
{
deleteNode(level);
if (down)
{
down->iterativeRemoveChildren(true, level + 1);
down = nullAST;
}
if (doSiblings)
{
RefAST next;
AST * last = NULL;
AST * loop = this;
// We set up a reverse sibling chain to allow us to delete the siblings in reverse order.
// This is because deleting the first causes a chain reaction (due to reference counting)
// that causes all the other siblings to be deleted, and that can cause a stack overflow.
this->setPreviousSibling(NULL);
while (loop)
{
next = loop->getNextSibling();
loop->iterativeRemoveChildren(false, level);
if (next)
{
next->setPreviousSibling(loop);
last = next;
}
loop = next;
}
next = nullAST;
// Now follow the back-pointers to delete the items in reverse order.
loop = last;
AST * prev;
while (loop)
{
prev = loop->getPreviousSibling();
loop->setPreviousSibling(NULL);
loop->setNextSibling(nullAST); // this should delete the sibling
loop = prev;
}
}
}
|