File: GlyphBoundaries.cpp

package info (click to toggle)
grcompiler 5.2.1-0.2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,968 kB
  • sloc: cpp: 48,199; ansic: 7,670; sh: 4,427; makefile: 197; xml: 190; perl: 127; sed: 21
file content (847 lines) | stat: -rw-r--r-- 35,305 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
/*--------------------------------------------------------------------*//*:Ignore this sentence.
Copyright (C) 1999, 2001 SIL International. All rights reserved.

Distributable under the terms of either the Common Public License or the
GNU Lesser General Public License, as specified in the LICENSING.txt file.

File: GlyphBoundaries.cpp
Responsibility: Sharon Correll
Last reviewed: Not yet.

Description
    A data structure that approximates the boundaries of the glyph.
-------------------------------------------------------------------------------*//*End Ignore*/

/***********************************************************************************************
	Include files
***********************************************************************************************/
#include "main.h"
#include <iomanip>

#ifdef _MSC_VER
#pragma hdrstop
#endif
#undef THIS_FILE
DEFINE_THIS_FILE

/***********************************************************************************************
	Forward declarations
***********************************************************************************************/

/***********************************************************************************************
	Local constants and static variables
***********************************************************************************************/

//	None


/***********************************************************************************************
	Methods: Constructor
***********************************************************************************************/
//GlyphBoundaries::GlyphBoundaries(GrcFont * pfont, gid16 wGlyphID) : m_pfont(pfont)
//{
//	// Cache some metrics?
//}

GlyphBoundaryCell::GlyphBoundaryCell()
{
	Initialize();
}

void GlyphBoundaryCell::Initialize()
{
	// Initialize min to something large:
	m_dValues[GlyphBoundaries::gbcLeft] = 2.0;
	m_dValues[GlyphBoundaries::gbcBottom] = 2.0;
	m_dValues[GlyphBoundaries::gbcDPMin] = 100.0;
	m_dValues[GlyphBoundaries::gbcDNMin] = 100.0;
	// Initialize max to something small:
	m_dValues[GlyphBoundaries::gbcRight] = 0;
	m_dValues[GlyphBoundaries::gbcTop] = 0;
	m_dValues[GlyphBoundaries::gbcDPMax] = -100.0;		// -1 should be good enough
	m_dValues[GlyphBoundaries::gbcDNMax] = -100.0;		// 0 should be good enough

	// Initialize intersections
	m_mEntry[GlyphBoundaries::gbcLeft][gbcMin] =   99999;
	m_mEntry[GlyphBoundaries::gbcRight][gbcMin] =  99999;
	m_mEntry[GlyphBoundaries::gbcBottom][gbcMin] = 99999;
	m_mEntry[GlyphBoundaries::gbcTop][gbcMin] =    99999;

	m_mExit[GlyphBoundaries::gbcLeft][gbcMin] =    99999;
	m_mExit[GlyphBoundaries::gbcRight][gbcMin] =   99999;
	m_mExit[GlyphBoundaries::gbcBottom][gbcMin] =  99999;
	m_mExit[GlyphBoundaries::gbcTop][gbcMin] =     99999;

	m_mEntry[GlyphBoundaries::gbcLeft][gbcMax] =   -99999;
	m_mEntry[GlyphBoundaries::gbcRight][gbcMax] =  -99999;
	m_mEntry[GlyphBoundaries::gbcBottom][gbcMax] = -99999;
	m_mEntry[GlyphBoundaries::gbcTop][gbcMax] =    -99999;

	m_mExit[GlyphBoundaries::gbcLeft][gbcMax] =    -99999;
	m_mExit[GlyphBoundaries::gbcRight][gbcMax] =   -99999;
	m_mExit[GlyphBoundaries::gbcBottom][gbcMax] =  -99999;
	m_mExit[GlyphBoundaries::gbcTop][gbcMax] =     -99999;

}


/***********************************************************************************************
	Methods: Pre-compiler
***********************************************************************************************/

/*----------------------------------------------------------------------------------------------
	Convert em-units to normalized values between 0 and 1.0, where 0 and 1 are the bounding
	box of the glyph (not the em-square).
----------------------------------------------------------------------------------------------*/
void GlyphBoundaries::NormalizePoint(int mx, int my, float * pdx, float * pdy)
{
	*pdx = float(mx - m_mxBbMin) / float(m_mxBbMax - m_mxBbMin);
	*pdy = float(my - m_myBbMin) / float(m_myBbMax - m_myBbMin);
}

/*----------------------------------------------------------------------------------------------
	Convert normalized points to em-units.
----------------------------------------------------------------------------------------------*/
void GlyphBoundaries::UnnormalizePoint(float dx, float dy, int * pmx, int * pmy)
{
	*pmx = int((dx * m_mxBbMax) + ((1 - dx) * m_mxBbMin));
    *pmy = int((dy * m_myBbMax) + ((1 - dy) * m_myBbMin));
}

/*----------------------------------------------------------------------------------------------
	Convert sums and differences that represent diagonal lines to normalized values.
	The coordinate system for each is the range of maximum and mimimum possible diagonals.
	For the sum, maximum and minimum diagonals are defined by the upper-right and lower-left
	points on the bounding box; for the diff, the range is defined by the lower-right and
	upper-left points.
----------------------------------------------------------------------------------------------*/
void GlyphBoundaries::NormalizeSumAndDiff(int mSum, int mDiff, float * pdSum, float * pdDiff)
{
	// Calculate the scaling factor for normalizing the diagonals.
	int mMinSum = m_mxBbMin + m_myBbMin;	// lower-left point
	int mMaxSum = m_mxBbMax + m_myBbMax;	// upper-right point
	int mMinDiff = m_mxBbMin - m_myBbMax;	// upper-left point
	int mMaxDiff = m_mxBbMax - m_myBbMin;	// lower-right point

	int mSumScale = mMaxSum - mMinSum;
	int mDiffScale = mMaxDiff - mMinDiff;
	Assert(mSumScale == mDiffScale);

	*pdSum = (float)(mSum - mMinSum) / mSumScale;
	*pdDiff = (float)(mDiff - mMinDiff) / mDiffScale;
}

/*----------------------------------------------------------------------------------------------
	Given an sum (x+y) and difference (x-y) in normalised space (x,y between 0 and 1),
	return the corresponding addition and subtraction in normal em space coordinate space.
----------------------------------------------------------------------------------------------*/
void GlyphBoundaries::UnnormalizeSumAndDiff(float dSum, float dDiff, int * pmSum, int * pmDiff)
{
	int mMinSum = m_mxBbMin + m_myBbMin;	// lower-left point
	int mMaxSum = m_mxBbMax + m_myBbMax;	// upper-right point
	int mMinDiff = m_mxBbMin - m_myBbMax;	// upper-left point
	int mMaxDiff = m_mxBbMax - m_myBbMin;	// lower-right point

	int mSumScale = mMaxSum - mMinSum;
	int mDiffScale = mMaxDiff - mMinDiff;
	Assert(mSumScale == mDiffScale);

	*pmSum = (int)(dSum * mSumScale) + mMinSum;
	*pmDiff = (int)(dDiff * mDiffScale) + mMinDiff;
}


// Version from Martin's original code:

//void GlyphBoundaries::UnnormalizeSumAndDiff(float dSum, float dDiff, int * pmSum, int * pmDiff)
//{
//    double mx = ((dSum + dDiff) * 0.5 * (m_mxBbMax - m_mxBbMin)) + m_mxBbMin;
//    double my = ((dSum - dDiff) * 0.5 * (m_myBbMax - m_myBbMin)) + m_myBbMin;
//	*pmSum = int(mx + my);
//	*pmDiff = int(mx - my);
//}

/*----------------------------------------------------------------------------------------------
	 Accumulates a point into a glyph or subglyph structure. We store the actual points, but
	 never use them. But we do use the accumulated maximal bounding box (bbox) and maximal
	 diamond box (dbox). If we are working with subboxes, we will also want to accumulate
	 for the whole glyph. Notice there is no need to accumulate a whole glyph bbox
	 because that's already defined for a glyph.
----------------------------------------------------------------------------------------------*/
void GlyphBoundaries::AddPoint(int icellX, int icellY, int mx, int my, float dx, float dy,
	bool fEntire)
{
	GlyphBoundaryCell * pgbcell = m_rggbcellSub + CellIndex(icellX, icellY);

    //pgbdy->m_vdx.push_back(dx);
	//pgbdy->m_vdy.push_back(dy);

	int mSum = mx + my;		// negative sloped lines at -45 degree angle
	int mDiff = mx - my;	// positive sloped lines at 45 degree angle
	float dSum, dDiff;
	NormalizeSumAndDiff(mSum, mDiff, &dSum, &dDiff);

	// Fix rounding errors that occur in 64-bit build.
	if (dx < 0.0) dx = 0.0;
	if (dy < 0.0) dy = 0.0;
	if (dSum < 0.0) dSum = 0.0;
	if (dDiff < 0.0) dDiff = 0.0;
	if (dx > 1.0) dx = 1.0;
	if (dy > 1.0) dy = 1.0;
	if (dSum > 1.0) dSum = 1.0;
	if (dDiff > 1.0) dDiff = 1.0;

	// Calculate mins and maxes.
    if (pgbcell->m_dValues[gbcLeft] == gbcUndef || dx < pgbcell->m_dValues[gbcLeft])
		pgbcell->m_dValues[gbcLeft] = dx;
    if (pgbcell->m_dValues[gbcRight] == gbcUndef || dx > pgbcell->m_dValues[gbcRight])
		pgbcell->m_dValues[gbcRight] = dx;
    if (pgbcell->m_dValues[gbcBottom] == gbcUndef || dy < pgbcell->m_dValues[gbcBottom])
		pgbcell->m_dValues[gbcBottom] = dy;
    if (pgbcell->m_dValues[gbcTop] == gbcUndef || dy > pgbcell->m_dValues[gbcTop])
		pgbcell->m_dValues[gbcTop] = dy;

    if (pgbcell->m_dValues[gbcDNMin] == gbcUndef || dSum < pgbcell->m_dValues[gbcDNMin])
		pgbcell->m_dValues[gbcDNMin] = dSum;
    if (pgbcell->m_dValues[gbcDNMax] == gbcUndef || dSum > pgbcell->m_dValues[gbcDNMax])
		pgbcell->m_dValues[gbcDNMax] = dSum;
    if (pgbcell->m_dValues[gbcDPMin] == gbcUndef || dDiff < pgbcell->m_dValues[gbcDPMin])
		pgbcell->m_dValues[gbcDPMin] = dDiff;
    if (pgbcell->m_dValues[gbcDPMax] == gbcUndef || dDiff > pgbcell->m_dValues[gbcDPMax])
		pgbcell->m_dValues[gbcDPMax] = dDiff;

    if (fEntire)
    {
		// Also add to the diamond for the entire glyph.
		if (m_gbcellEntire.m_dValues[gbcDNMin] == gbcUndef || dSum < m_gbcellEntire.m_dValues[gbcDNMin])
			m_gbcellEntire.m_dValues[gbcDNMin] = dSum;
		if (m_gbcellEntire.m_dValues[gbcDNMax] == gbcUndef || dSum > m_gbcellEntire.m_dValues[gbcDNMax])
			m_gbcellEntire.m_dValues[gbcDNMax] = dSum;
		if (m_gbcellEntire.m_dValues[gbcDPMin] == gbcUndef || dDiff < m_gbcellEntire.m_dValues[gbcDPMin])
			m_gbcellEntire.m_dValues[gbcDPMin] = dDiff;
		if (m_gbcellEntire.m_dValues[gbcDPMax] == gbcUndef || dDiff > m_gbcellEntire.m_dValues[gbcDPMax])
			m_gbcellEntire.m_dValues[gbcDPMax] = dDiff;
    }
}

/*----------------------------------------------------------------------------------------------
	Keep track of the minimal and maximum points where the glyph curve intersects the given
	cell.
----------------------------------------------------------------------------------------------*/
void GlyphBoundaries::AddEntryMinMax(int icellX, int icellY, int gbcSide, int mVal)
{
	GlyphBoundaryCell * pgbcell = m_rggbcellSub + CellIndex(icellX, icellY);
	pgbcell->AddEntryMinMax(gbcSide, mVal);
}

void GlyphBoundaries::AddExitMinMax(int icellX, int icellY, int gbcSide, int mVal)
{
	GlyphBoundaryCell * pgbcell = m_rggbcellSub + CellIndex(icellX, icellY);
	pgbcell->AddExitMinMax(gbcSide, mVal);
}

void GlyphBoundaryCell::AddEntryMinMax(int nSide, int mVal)
{
	if (mVal < m_mEntry[nSide][gbcMin])
		m_mEntry[nSide][gbcMin] = mVal;
	if (mVal > m_mEntry[nSide][gbcMax])
		m_mEntry[nSide][gbcMax] = mVal;
}

void GlyphBoundaryCell::AddExitMinMax(int nSide, int mVal)
{
	if (mVal < m_mExit[nSide][gbcMin])
		m_mExit[nSide][gbcMin] = mVal;
	if (mVal > m_mExit[nSide][gbcMax])
		m_mExit[nSide][gbcMax] = mVal;
}


/*----------------------------------------------------------------------------------------------
	 Does the cell have any data in it?
----------------------------------------------------------------------------------------------*/
bool GlyphBoundaryCell::HasData()
{
	// They are initialized such that right < left.
	return (m_dValues[GlyphBoundaries::gbcLeft] < m_dValues[GlyphBoundaries::gbcRight]);
}

/*----------------------------------------------------------------------------------------------
	 Does the cell have an entry/exit on the given side?
----------------------------------------------------------------------------------------------*/
bool GlyphBoundaryCell::HasEntry(int nSide)
{
	// They are initialized such that max < min.
	return (m_mEntry[nSide][gbcMin] <= m_mEntry[nSide][gbcMax]);
}

bool GlyphBoundaryCell::HasExit(int nSide)
{
	// They are initialized such that max < min.
	return (m_mExit[nSide][gbcMin] <= m_mExit[nSide][gbcMax]);
}

/*----------------------------------------------------------------------------------------------
	 Return a bitmap indicating which cells of the grid overlap with the curve.
	 Zero means we don't want subboxes for this glyph - it has a simple shape.
----------------------------------------------------------------------------------------------*/
int GlyphBoundaries::CellGridBitmap()
{
	int nBitmap = 0;
	for (int icellY = gbgridCellsV-1; icellY >= 0; icellY--)
	{
		for (int icellX = gbgridCellsH-1; icellX >= 0; icellX--)
		{
			nBitmap = nBitmap << 1;
			GlyphBoundaryCell * pgbcell = m_rggbcellSub + CellIndex(icellX, icellY);
			if (pgbcell->HasData())
				nBitmap = nBitmap + 1;
		}
	}
	return nBitmap;
}

/*----------------------------------------------------------------------------------------------
	 Develop a grid of octaboxes that correspond to the glyph curve, and also an octabox
	 for the entire glyph.
	 If fComplex is false, only the octabox for the entire glyph is needed.
----------------------------------------------------------------------------------------------*/
void GlyphBoundaries::OverlayGrid(GrcFont * pfont, bool fComplex)
{
	std::vector<int> vmx;
	std::vector<int> vmy;
	std::vector<int> viEndPt;
	std::vector<bool> vfOnCurve;	// not used

	const float ccellX = (float)gbgridCellsH;
	const float ccellY = (float)gbgridCellsV;

	m_mxBbMin = m_myBbMin = 99999;	// something very large
	m_mxBbMax = m_myBbMax = -99999;	// something very small
	if (pfont->IsSpace(m_wGlyphID))
	{
		// Leave metrics empty.
		m_gbcellEntire.m_dValues[gbcDNMin] = 0;
		m_gbcellEntire.m_dValues[gbcDNMax] = 0;
		m_gbcellEntire.m_dValues[gbcDPMin] = 0;
		m_gbcellEntire.m_dValues[gbcDPMax] = 0;
	}
	else if (pfont->GetGlyfPts(m_wGlyphID, &viEndPt, &vmx, &vmy, &vfOnCurve))
	{
		// Calculate bounding box, which is used to normalize all the octaboxes.
		for (int i = 0; i < signed(vmx.size()); i++)
		{
			m_mxBbMin = (vmx[i] < m_mxBbMin) ? vmx[i] : m_mxBbMin;
			m_mxBbMax = (vmx[i] > m_mxBbMax) ? vmx[i] : m_mxBbMax;
			m_myBbMin = (vmy[i] < m_myBbMin) ? vmy[i] : m_myBbMin;
			m_myBbMax = (vmy[i] > m_myBbMax) ? vmy[i] : m_myBbMax;
		}
		float dxMin, dyMin, dxMax, dyMax;
		NormalizePoint(m_mxBbMin, m_myBbMin, &dxMin, &dyMin);
		Assert(dxMin == 0);
		Assert(dyMin == 0);
		NormalizePoint(m_mxBbMax, m_myBbMax, &dxMax, &dyMax);
		Assert(dxMax == 1.0);
		Assert(dyMax == 1.0);

		// Now iterate over all the points again (even ones off-curve, since this is
		// just an approximation), and adjust the relevant cell's min/max values
		// accordingly.

		int icellXPrev = -1;
		int icellYPrev = -1;
		float dxPrev, dyPrev;
		int icurve = 0;

		for (int i = 0; i < signed(vmx.size()); i++)
		{
			int mx = vmx[i];
			int my = vmy[i];
			float dx, dy;
			NormalizePoint(mx, my, &dx, &dy); // dx, dy range from 0 .. 1.0.

			// Figure out which grid cell this point belongs in; indices are 0 .. 3.
			int icellX = int((dx * ccellX) - .001);
			int icellY = int((dy * ccellY) - .001);

			AddPoint(icellX, icellY, mx, my, dx, dy, true);
 
			// Figure out which direction we're moving: if this point is in a new cell,
			// adjust the enter/exit max and mins.
			if (icellXPrev != -1)
			{
				while (icellX > icellXPrev)
				{
					// Moving right. Handle the intersections on the right of the previous cell and the
					// left of this cell.
					
					// Interpolate between the two points.
					float dxBoundary = float((icellXPrev + 1) / ccellX); // border between two cells
					float dRatio = (dxBoundary - dxPrev) / (dx - dxPrev);
					float dyBoundary = (dRatio * dy) + ((1 - dRatio) * dyPrev);
					int icellYBoundary = int((dyBoundary * ccellY) - .001);
					int mxBoundary, myBoundary;
					UnnormalizePoint(dxBoundary, dyBoundary, &mxBoundary, &myBoundary);

					// Add the intersection to the cell on the left (which might not be the previous cell, because
					// the Y coordinate might have shifted quite a bit as well).
					AddPoint(icellXPrev, icellYBoundary, mxBoundary, myBoundary, dxBoundary, dyBoundary, false);
					// Also adjust the intersections based on the fact that the curve is leaving the old cell.
					AddExitMinMax(icellXPrev, icellYBoundary, gbcRight, myBoundary);

					// Advance to the next cell on the right which still might not be the final cell of the
					// of the line. But it is the neighboring cell.
					++icellXPrev;

					// Now indicate the line is entering this new cell from the left.
					AddPoint(icellXPrev, icellYBoundary, mxBoundary, myBoundary, dxBoundary, dyBoundary, false);
					AddEntryMinMax(icellXPrev, icellYBoundary, gbcLeft, myBoundary);
				}

				// Repeat above logic for the other three directions...

				while (icellX < icellXPrev)
				{
					// Moving left. Handle the intersections on the left of the previous cell and the
					// right of this cell.
					
					// Interpolate between the two points.
					float dxBoundary = float(icellXPrev / ccellX); // border between two cells
					float dRatio = (dxBoundary - dxPrev) / (dx - dxPrev);
					float dyBoundary = (dRatio * dy) + ((1 - dRatio) * dyPrev);
					int icellYBoundary = int((dyBoundary * ccellY) - .001);
					int mxBoundary, myBoundary;
					UnnormalizePoint(dxBoundary, dyBoundary, &mxBoundary, &myBoundary);

					// Add the intersection to the cell on the right (which might not be the previous cell, because
					// the Y coordinate might have shifted quite a bit as well).
					AddPoint(icellXPrev, icellYBoundary, mxBoundary, myBoundary, dxBoundary, dyBoundary, false);
					// Also adjust the intersections based on the fact that the curve is leaving the old cell.
					AddExitMinMax(icellXPrev, icellYBoundary, gbcLeft, myBoundary);

					// Advance to the next cell on the left which still might not be the final cell of the
					// of the line. But it is the neighboring cell.
					--icellXPrev;

					// Now indicate the line is entering this new cell from the left.
					AddPoint(icellXPrev, icellYBoundary, mxBoundary, myBoundary, dxBoundary, dyBoundary, false);
					AddEntryMinMax(icellXPrev, icellYBoundary, gbcRight, myBoundary);
				}

				while (icellY > icellYPrev)
				{
					// Moving up. Handle the intersections on the top of the previous cell and the
					// bottom of this cell.
					
					// Interpolate between the two points.
					float dyBoundary = float((icellYPrev + 1) / ccellY); // border between two cells
					float dRatio = (dyBoundary - dyPrev) / (dy - dyPrev);
					float dxBoundary = (dRatio * dx) + ((1 - dRatio) * dxPrev);
					int icellXBoundary = int((dxBoundary * ccellX) - .001);
					int mxBoundary, myBoundary;
					UnnormalizePoint(dxBoundary, dyBoundary, &mxBoundary, &myBoundary);

					// Add the intersection to the cell on the bottom (which might not be the previous cell, because
					// the X coordinate might have shifted quite a bit as well).
					AddPoint(icellXBoundary, icellYPrev, mxBoundary, myBoundary, dxBoundary, dyBoundary, false);
					// Also adjust the intersections based on the fact that the curve is leaving the old cell.
					AddExitMinMax(icellXBoundary, icellYPrev, gbcTop, mxBoundary);

					// Advance to the next cell above which still might not be the final cell of the
					// of the line. But it is the neighboring cell.
					++icellYPrev;

					// Now indicate the line is entering this new cell from the bottom.
					AddPoint(icellXBoundary, icellYPrev, mxBoundary, myBoundary, dxBoundary, dyBoundary, false);
					AddEntryMinMax(icellXBoundary, icellYPrev, gbcBottom, mxBoundary);
				}

				while (icellY < icellYPrev)
				{
					// Moving down. Handle the intersections on the bottom of the previous cell and the
					// top of this cell.
					
					// Interpolate between the two points.
					float dyBoundary = float(icellYPrev / ccellY); // border between two cells
					float dRatio = (dyBoundary - dyPrev) / (dy - dyPrev);
					float dxBoundary = (dRatio * dx) + ((1 - dRatio) * dxPrev);
					int icellXBoundary = int((dxBoundary * ccellX) - .001);
					int mxBoundary, myBoundary;
					UnnormalizePoint(dxBoundary, dyBoundary, &mxBoundary, &myBoundary);

					// Add the intersection to the cell on the top (which might not be the previous cell, because
					// the X coordinate might have shifted quite a bit as well).
					AddPoint(icellXBoundary, icellYPrev, mxBoundary, myBoundary, dxBoundary, dyBoundary, false);
					// Also adjust the intersections based on the fact that the curve is leaving the old cell.
					AddExitMinMax(icellXBoundary, icellYPrev, gbcBottom, mxBoundary);

					// Advance to the next cell below which still might not be the final cell of the
					// of the line. But it is the neighboring cell.
					--icellYPrev;

					// Now indicate the line is entering this new cell from the top.
					AddPoint(icellXBoundary, icellYPrev, mxBoundary, myBoundary, dxBoundary, dyBoundary, false);
					AddEntryMinMax(icellXBoundary, icellYPrev, gbcTop, mxBoundary);
				}
			}

			if (viEndPt[icurve] == i)
			{
				// Break the curve.
				icurve++;
				icellXPrev = -1;
				icellYPrev = -1;
			}
			else
			{
				// Continue the curve.
				icellXPrev = icellX;
				icellYPrev = icellY;
				dxPrev = dx;
				dyPrev = dy;
			}
		} // end of looping over points

		// Now figure out which corners need to be added based on the entry and exit points.

		// We want to add point at the lower left corner if the minimum entry on the baseline 
		// is less than (to the left of) the minimum exit (or there is no exit), or if 
		// looking at the left vertical grid line if the minimum exit is less than (below)
		// the minimum entry.

		int gbcMin = GlyphBoundaryCell::gbcMin;
		int gbcMax = GlyphBoundaryCell::gbcMax;

		int mx, my;
		for (int icellX = 0; icellX < gbgridCellsH; icellX++)
		{
			for (int icellY = 0; icellY < gbgridCellsV; icellY++)
			{
				GlyphBoundaryCell * pgbcell = m_rggbcellSub + CellIndex(icellX, icellY);
				// Bottom left
				int leftMinEntry = pgbcell->m_mEntry[gbcLeft][gbcMin];
				int leftMinExit = pgbcell->m_mExit[gbcLeft][gbcMin];
				int bottomMinEntry = pgbcell->m_mEntry[gbcBottom][gbcMin];
				int bottomMinExit = pgbcell->m_mExit[gbcBottom][gbcMin];

				if ((pgbcell->HasEntry(gbcLeft)
							&& (!pgbcell->HasExit(gbcLeft) || leftMinEntry < leftMinExit))
					|| (pgbcell->HasExit(gbcBottom)
							&& (!pgbcell->HasEntry(gbcBottom) || bottomMinExit < bottomMinEntry)))
				{
					UnnormalizePoint(float(icellX / ccellX), float(icellY / ccellY), &mx, &my);
					AddPoint(icellX, icellY, mx, my, float(icellX / ccellX), float(icellY / ccellY), false);
				}

				// Top left
				int leftMaxEntry = pgbcell->m_mEntry[gbcLeft][gbcMax];
				int leftMaxExit = pgbcell->m_mExit[gbcLeft][gbcMax];
				int topMinEntry = pgbcell->m_mEntry[gbcTop][gbcMin];
				int topMinExit = pgbcell->m_mExit[gbcTop][gbcMin];

				if ((pgbcell->HasExit(gbcLeft)
							&& (!pgbcell->HasEntry(gbcLeft) || leftMaxExit > leftMaxEntry))
					|| (pgbcell->HasEntry(gbcTop)
							&& (!pgbcell->HasExit(gbcTop) || topMinEntry < topMinExit)))
				{
					UnnormalizePoint(float(icellX / ccellX), float((icellY+1) / ccellY), &mx, &my);
					AddPoint(icellX, icellY, mx, my, float(icellX / ccellX), float((icellY+1) / ccellY), false);
				}

				// Bottom right
				int rightMinEntry = pgbcell->m_mEntry[gbcRight][gbcMin];
				int rightMinExit = pgbcell->m_mExit[gbcRight][gbcMin];
				int bottomMaxEntry = pgbcell->m_mEntry[gbcBottom][gbcMax];
				int bottomMaxExit = pgbcell->m_mExit[gbcBottom][gbcMax];

				if ((pgbcell->HasExit(gbcRight)
							&& (!pgbcell->HasEntry(gbcRight) || rightMinExit < rightMinEntry))
					|| (pgbcell->HasEntry(gbcBottom)
							&& (!pgbcell->HasExit(gbcBottom) || bottomMaxEntry > bottomMaxExit)))
				{
					UnnormalizePoint(float((icellX+1) / ccellX), float(icellY / ccellY), &mx, &my);
					AddPoint(icellX, icellY, mx, my, float((icellX+1) / ccellX), float(icellY / ccellY), false);
				}

				// Top right
				int rightMaxEntry = pgbcell->m_mEntry[gbcRight][gbcMax];
				int rightMaxExit = pgbcell->m_mExit[gbcRight][gbcMax];
				int topMaxEntry = pgbcell->m_mEntry[gbcTop][gbcMax];
				int topMaxExit = pgbcell->m_mExit[gbcTop][gbcMax];

				if ((pgbcell->HasEntry(gbcRight)
							&& (!pgbcell->HasExit(gbcRight) || rightMaxEntry > rightMaxExit))
					|| (pgbcell->HasExit(gbcTop)
							&& (!pgbcell->HasEntry(gbcTop) || topMaxExit > topMaxEntry)))
				{
					UnnormalizePoint(float((icellX+1) / ccellX), float((icellY+1) / ccellY), &mx, &my);
					AddPoint(icellX, icellY, mx, my, float((icellX+1) / ccellX), float((icellY+1) / ccellY), false);
				}
			}
		}

		//	If complex metrics were not requested, clear all the subboxes but leave the
		//	full-glyph diagonals.
		//	This is obviously not the most efficient way to implement this, but it is the
		//	easiest and least messy.
		if (!fComplex)
			ClearSubBoxCells();
	}
	else
	{
		// Leave metrics empty
		m_gbcellEntire.m_dValues[gbcDNMin] = 0;
		m_gbcellEntire.m_dValues[gbcDNMax] = 0;
		m_gbcellEntire.m_dValues[gbcDPMin] = 0;
		m_gbcellEntire.m_dValues[gbcDPMax] = 0;
	}

	RoundSubBoxCells();
}

/*----------------------------------------------------------------------------------------------
	 Return true if subbox octaboxes are needed for this glyph.
----------------------------------------------------------------------------------------------*/
bool GlyphBoundaries::ComplexFit()
{
	int nBitmap = this->CellGridBitmap();
	return (nBitmap != 0);
}

/*----------------------------------------------------------------------------------------------
	 Output glyph boundaries data for one glyph to the Glat table. Return the number
	 of bytes written.
----------------------------------------------------------------------------------------------*/
int GlyphBoundaries::OutputToGlat(GrcBinaryStream * pbstrm)
{
	int cb = 0;
	int nBitmap = this->CellGridBitmap();
	pbstrm->WriteShort(nBitmap);
	cb += 2;

	cb += OutputGlatFullDiagonals(pbstrm);

	for (int icellY = 0; icellY < gbgridCellsV; icellY++)
	{
		for (int icellX = 0; icellX < gbgridCellsH; icellX++)
		{
			cb += OutputGlatSubBox(pbstrm, icellX, icellY);
		}
	}
	return cb;
}

/*----------------------------------------------------------------------------------------------
	 Scale full-glyph octabox coordinates and output into the Glat table.
	 Note that we don't include the bounding box rectangle since it is stored elsewhere
	 in the font.
----------------------------------------------------------------------------------------------*/
int GlyphBoundaries::OutputGlatFullDiagonals(GrcBinaryStream * pbstrm)
{
	Assert(m_gbcellEntire.m_dValues[gbcDNMin] >= 0);
	Assert(m_gbcellEntire.m_dValues[gbcDNMax] >= 0);
	Assert(m_gbcellEntire.m_dValues[gbcDPMin] >= 0);
	Assert(m_gbcellEntire.m_dValues[gbcDPMax] >= 0);
	Assert(m_gbcellEntire.m_dValues[gbcDNMin] <= 1.0);
	Assert(m_gbcellEntire.m_dValues[gbcDNMax] <= 1.0);
	Assert(m_gbcellEntire.m_dValues[gbcDPMin] <= 1.0);
	Assert(m_gbcellEntire.m_dValues[gbcDPMax] <= 1.0);

	// The possible range for negatively sloped diagonals is [0 .. 1]. Scale them to [0 .. 255].
	int sDNMin = min(int(m_gbcellEntire.m_dValues[gbcDNMin] * 255), 255);
	int sDNMax = min(int(m_gbcellEntire.m_dValues[gbcDNMax] * 255), 255);
	int sDPMin = min(int(m_gbcellEntire.m_dValues[gbcDPMin] * 255), 255);
	int sDPMax = min(int(m_gbcellEntire.m_dValues[gbcDPMax] * 255), 255);

	pbstrm->WriteByte(sDNMin);
	pbstrm->WriteByte(sDNMax);
	pbstrm->WriteByte(sDPMin);
	pbstrm->WriteByte(sDPMax);

	return 4;
}

/*----------------------------------------------------------------------------------------------
	 Scale octabox sub-box coordinates and output into the Glat table.
----------------------------------------------------------------------------------------------*/
int GlyphBoundaries::OutputGlatSubBox(GrcBinaryStream * pbstrm, int icellX, int icellY)
{
	GlyphBoundaryCell * pgbcell = m_rggbcellSub + CellIndex(icellX, icellY);

	if (pgbcell->HasData())
	{
		Assert(pgbcell->m_dValues[gbcLeft]  >= 0);
		Assert(pgbcell->m_dValues[gbcRight] >= 0);
		Assert(pgbcell->m_dValues[gbcBottom]>= 0);
		Assert(pgbcell->m_dValues[gbcTop]   >= 0);
		Assert(pgbcell->m_dValues[gbcDNMin] >= 0);
		Assert(pgbcell->m_dValues[gbcDNMax] >= 0);
		Assert(pgbcell->m_dValues[gbcDPMin] >= 0);
		Assert(pgbcell->m_dValues[gbcDPMax] >= 0);
		Assert(pgbcell->m_dValues[gbcLeft]  <= 1.0);
		Assert(pgbcell->m_dValues[gbcRight] <= 1.0);
		Assert(pgbcell->m_dValues[gbcBottom]<= 1.0);
		Assert(pgbcell->m_dValues[gbcTop]   <= 1.0);
		Assert(pgbcell->m_dValues[gbcDNMin] <= 1.0);
		Assert(pgbcell->m_dValues[gbcDNMax] <= 1.0);
		Assert(pgbcell->m_dValues[gbcDPMin] <= 1.0);
		Assert(pgbcell->m_dValues[gbcDPMax] <= 1.0);

		// The possible range for horizontal and vertical boundaries is [0 .. 1]. Scale them to [0 .. 255].
		int sLeft   = min(int(pgbcell->m_dValues[gbcLeft]   * 255), 255);
		int sRight  = min(int(pgbcell->m_dValues[gbcRight]  * 255), 255);
		int sBottom = min(int(pgbcell->m_dValues[gbcBottom] * 255), 255);
		int sTop    = min(int(pgbcell->m_dValues[gbcTop]    * 255), 255);

		// The possible range for diagonals is [0 .. 1]. Scale them to [0 .. 255].
		int sDNMin = min(int(pgbcell->m_dValues[gbcDNMin] * 255), 255);
		int sDNMax = min(int(pgbcell->m_dValues[gbcDNMax] * 255), 255);
		int sDPMin = min(int(pgbcell->m_dValues[gbcDPMin] * 255), 255);
		int sDPMax = min(int(pgbcell->m_dValues[gbcDPMax] * 255), 255);

		pbstrm->WriteByte(sLeft);
		pbstrm->WriteByte(sRight);
		pbstrm->WriteByte(sBottom);
		pbstrm->WriteByte(sTop);

		pbstrm->WriteByte(sDNMin);
		pbstrm->WriteByte(sDNMax);
		pbstrm->WriteByte(sDPMin);
		pbstrm->WriteByte(sDPMax);

		return 8;
	}
	else
		return 0;
}

/*----------------------------------------------------------------------------------------------
	 Output glyph boundaries for a glyph that does not really exist in the font
	 (ie, a pseudo-glyph).
----------------------------------------------------------------------------------------------*/
int GlyphBoundaries::OutputToGlatNonexistent(GrcBinaryStream * pbstrm)
{
	// Empty bitmap
	pbstrm->WriteShort(0);
	// 4 bogus diagonals
	pbstrm->WriteByte(0);
	pbstrm->WriteByte(0);
	pbstrm->WriteByte(0);
	pbstrm->WriteByte(0);

	return 6;
}

/*----------------------------------------------------------------------------------------------
	 Clear all the data in the sub-box cells.
	 Currently is only called when we have a simple glyph for which we don't need sub-boxes.
----------------------------------------------------------------------------------------------*/
void GlyphBoundaries::ClearSubBoxCells()
{
	for (int icellX = 0; icellX < gbgridCellsH; icellX++)
	{
		for (int icellY = 0; icellY < gbgridCellsV; icellY++)
		{
			GlyphBoundaryCell * pgbcell = m_rggbcellSub + CellIndex(icellX, icellY);
			pgbcell->Initialize();
			Assert(!pgbcell->HasData());
		}
	}
}

/*----------------------------------------------------------------------------------------------
	 Ignore tiny rounding errors.
----------------------------------------------------------------------------------------------*/
void GlyphBoundaries::RoundSubBoxCells()
{
	for (int icellX = 0; icellX < gbgridCellsH; icellX++)
	{
		for (int icellY = 0; icellY < gbgridCellsV; icellY++)
		{
			GlyphBoundaryCell * pgbcell = m_rggbcellSub + CellIndex(icellX, icellY);
			pgbcell->m_dValues[GlyphBoundaries::gbcLeft] = (float)(((int)(pgbcell->m_dValues[GlyphBoundaries::gbcLeft] * 10000)) / 10000.0);
			pgbcell->m_dValues[GlyphBoundaries::gbcBottom] = (float)(((int)(pgbcell->m_dValues[GlyphBoundaries::gbcBottom] * 10000)) / 10000.0);
			pgbcell->m_dValues[GlyphBoundaries::gbcDPMin] = (float)(((int)(pgbcell->m_dValues[GlyphBoundaries::gbcDPMin] * 10000)) / 10000.0);
			pgbcell->m_dValues[GlyphBoundaries::gbcDNMin] = (float)(((int)(pgbcell->m_dValues[GlyphBoundaries::gbcDNMin] * 10000)) / 10000.0);
			pgbcell->m_dValues[GlyphBoundaries::gbcRight] = (float)(((int)(pgbcell->m_dValues[GlyphBoundaries::gbcRight] * 10000)) / 10000.0);
			pgbcell->m_dValues[GlyphBoundaries::gbcTop] = (float)(((int)(pgbcell->m_dValues[GlyphBoundaries::gbcTop] * 10000)) / 10000.0);
			pgbcell->m_dValues[GlyphBoundaries::gbcDPMax] = (float)(((int)(pgbcell->m_dValues[GlyphBoundaries::gbcDPMax] * 10000)) / 10000.0);
			pgbcell->m_dValues[GlyphBoundaries::gbcDNMax] = (float)(((int)(pgbcell->m_dValues[GlyphBoundaries::gbcDNMax] * 10000)) / 10000.0);
		}
	}
}

/*----------------------------------------------------------------------------------------------
	 Output the glyph boundary estimatesto the .GDX file.
----------------------------------------------------------------------------------------------*/
void GlyphBoundaries::DebugXml(std::ofstream & strmOut)
{
	int mxLeft, mxRight, myBottom, myTop, mDnMin, mDnMax, mDpMin, mDpMax;

	// Note that left, right, bottom and top are not actually recorded; they are defined to be 0 and 1.
	UnnormalizePoint(0, 0, &mxLeft, &myBottom);
	UnnormalizePoint(1.0, 1.0, &mxRight, &myTop);
	UnnormalizeSumAndDiff(m_gbcellEntire.m_dValues[gbcDNMin], m_gbcellEntire.m_dValues[gbcDPMin],
		&mDnMin, &mDpMin);
	UnnormalizeSumAndDiff(m_gbcellEntire.m_dValues[gbcDNMax], m_gbcellEntire.m_dValues[gbcDPMax],
		&mDnMax, &mDpMax);

	//strmOut << std::fixed; // for outputing floating point
	//strmOut.precision(2);
	strmOut
		<< "      <glyphAttrValue name=\"octabox.full\" value=\""

		// Note that left, right, bottom and top are not actually recorded; they are defined to be 0 and 1.
		//<< "0  100 ; 0  100 ; "
		//<< int(m_gbcellEntire.m_dValues[gbcDNMin] * 100)  << "  "
		//<< int(m_gbcellEntire.m_dValues[gbcDNMax] * 100)  << " ; "
		//<< int(m_gbcellEntire.m_dValues[gbcDPMin] * 100)  << "  "
		//<< int(m_gbcellEntire.m_dValues[gbcDPMax] * 100)

		<< mxLeft << "  " << mxRight << " ; "
		<< myBottom << "  " << myTop << " ; "
		<< mDnMin << "  " << mDnMax << " ; "
		<< mDpMin << "  " << mDpMax
		<< "\" />\n";

    int count = 0;
	for (int icellY = 0; icellY < gbgridCellsV; icellY++)
	{
		for (int icellX = 0; icellX < gbgridCellsH; icellX++)
		{
			GlyphBoundaryCell * pgbcell = m_rggbcellSub + CellIndex(icellX, icellY);

			if (pgbcell->HasData())
			{
				UnnormalizePoint(pgbcell->m_dValues[gbcLeft], pgbcell->m_dValues[gbcBottom], 
					&mxLeft, &myBottom);
				UnnormalizePoint(pgbcell->m_dValues[gbcRight], pgbcell->m_dValues[gbcTop],
					&mxRight, &myTop);
				UnnormalizeSumAndDiff(pgbcell->m_dValues[gbcDNMin], pgbcell->m_dValues[gbcDPMin],
					&mDnMin, &mDpMin);
				UnnormalizeSumAndDiff(pgbcell->m_dValues[gbcDNMax], pgbcell->m_dValues[gbcDPMax],
					&mDnMax, &mDpMax);

				strmOut
					<< "      <glyphAttrValue name=\"octabox.sub_" << std::setfill('0') << std::setw(2) << count;
                strmOut << "_" << icellX+1 << "-" << icellY+1 << "\" value=\""

					//<< int(pgbcell->m_dValues[gbcLeft] * 100)   << "  "
					//<< int(pgbcell->m_dValues[gbcRight] * 100)  << " ; "
					//<< int(pgbcell->m_dValues[gbcBottom] * 100) << "  "
					//<< int(pgbcell->m_dValues[gbcTop] * 100)    << " ; "
					//<< int(pgbcell->m_dValues[gbcDNMin] * 100)  << "  "
					//<< int(pgbcell->m_dValues[gbcDNMax] * 100)  << " ; "
					//<< int(pgbcell->m_dValues[gbcDPMin] * 100)  << "  "
					//<< int(pgbcell->m_dValues[gbcDPMax] * 100)

					<< mxLeft << "  " << mxRight << " ; "
					<< myBottom << "  " << myTop << " ; "
					<< mDnMin << "  " << mDnMax << " ; "
					<< mDpMin << "  " << mDpMax
					<< "\" />\n";
                ++count;
			}
		}
	}
}