Frexx C Preprocessor

Frexx C Preprocessor

The Frexx C Preprocessor

The C preprocessor is a "macro processor” that is used automatically by the
C conpiler to transform your program before actual conpilation. It is called a
macr o processor because it allows you to define "macros”, which are brief
abbrevi ations for |onger constructs.

The C preprocessor provides four separate facilities that you can use as you
see fit:

* I nclusion of header files. These are files of declarations that
can be substituted into your program

* Macro expansi on. You can define "macros", which are abbreviations
for arbitrary fragnents of C code, and then the C preprocessor wl|
replace the macros with their definitions throughout the program

* Conditional conpilation. Using special preprocessing directives,
you can include or exclude parts of the program according to
vari ous conditions.

* Line control. If you use a programto conbi ne or rearrange source
files into an internediate file which is then conpiled, you can
use line control to informthe conpiler of where each source |ine
originally canme from

C preprocessors vary in sone details. This manual discusses the Frexx C
preprocessor, which supports all by ANSI C specified syntaxes.

Menu:

G obal Actions Actions made uniformy on all input files.
Directives General syntax of preprocessing directives.

Header Files How and why to use header files.

Macr os How and why to use macros.

Condi tional s How and why to use conditionals.

Conbi ni ng Sour ces Use of |ine control when you conbi ne source files.
QO her Directives M scel | aneous preprocessing directives.

Qut put Format of output fromthe C preprocessor.

| nvocati on How t o i nvoke the preprocessor; conmand options.

| ndex | ndex of directives, predefined nmacros, options, etc.

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/main.HTML [10/26/2004 3:25:04 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Global Actions

Transformati ons Made d obal |y

Most C preprocessor features are inactive unless you give specific
directives to request their use. (Preprocessing directives are lines starting
with "#'). But there are three transformations that the preprocessor always
makes on all the input it receives, even in the absence of directives.

* AIll C comments are replaced with single spaces.

* Backsl ash-Newl i ne sequences are deleted, no matter where. This
feature allows you to break long lines for cosnetic purposes
wi t hout changi ng their neaning.

* Predefined macro nanmes are replaced with their expansions.

The first two transformati ons are done *before* nearly all other parsing and
bef ore preprocessing directives are recogni zed. Thus, for exanple, you can
split a line cosnetically with Backsl ash-New i ne anywhere.

/*

| # |
*[defi\
ne FO
O 10\

20

is equivalent into #define FOO 1020'. You can split even an escape sequence
wi t h Backsl ash-Newl i ne. For exanple, you can split ""foo\bar"' between the
"\'" and the "b' to get

"foo\\
bar"

This behavior is unclean: in all other contexts, a Backslash can be inserted
in a string constant as an ordinary character by witing a doubl e Backsl ash,
and this creates an exception. But the ANSI C standard requires it. (Strict
ANSI C does not allow Newines in string constants, so they do not consider
this a problem)

But there are a few exceptions to all three transformations.

* C coments and predefined macro nanes are not recognized inside a
“#include' directive in which the file nanme is delimted with "<
and "~ >'.

http://www.contactor.se/~dast/fpl-old/cpp/global_actions.HTML (1 of 2) [10/26/2004 3:25:05 PM]

Global Actions

* C coments and predefined macro nanes are never recognized within a
character or string constant. (Strictly speaking, this is the
rul e, not an exception, but it is worth noting here anyway.)

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/global_actions.HTML (2 of 2) [10/26/2004 3:25:05 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Preprocessing Directives

Preprocessing Directives

Most preprocessor features are active only if you use preprocessing
directives to request their use.

Preprocessing directives are lines in your programthat start with "# . The
"#' is followed by an identifier that is the "directive nane". For exanple,
"#define' is the directive that defines a macro. Witespace is also all owed
before and after the "#'.

The set of valid directive nanes is fixed. Progranms cannot define new
preprocessing directives.

Sonme directive nanes require argunents; these nake up the rest of the
directive line and nmust be separated fromthe directive nanme by whitespace.
For exanple, "“#define' must be followed by a macro nane and the intended
expansi on of the macro. Sinple Macros

A preprocessing directive cannot be nore than one line in nornal
circunstances. It may be split cosnetically with Backsl ash-New i ne, but that
has no effect on its neaning. Comrents containing New ines can al so divide
the directive into nultiple lines, but the comments are changed to Spaces
before the directive is interpreted. The only way a significant New i ne can
occur in a preprocessing directive is wwthin a string constant or character
constant. Note that nost C conpilers that m ght be applied to the output from
t he preprocessor do not accept string or character constants contai ning
New i nes.

The "#' and the directive nanme cannot conme froma nmacro expansion. For
exanple, if foo' is defined as a macro expanding to define', that does not
make “#foo' a valid preprocessing directive.

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/directives.HTML [10/26/2004 3:25:05 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Simple Macros

Simple Macros

Si mpl e Macr os

A "sinple macro" is a kind of abbreviation. It is a nanme which stands for a
fragnent of code. Sone people refer to these as "nmani fest constants".

Bef ore you can use a nmacro, you nust "define" it explicitly with the
“#define' directive. “#define' is followed by the nane of the macro and then
the code it should be an abbreviation for. For exanple,

#def i ne BUFFER_SI ZE 1020

defines a nmacro named "BUFFER SI ZE' as an abbreviation for the text “1020'. If
somewhere after this “#define' directive there cones a C statenent of the
form

foo = (char *) xmalloc (BUFFER_SI ZE)

then the C preprocessor will recognize and "expand" the nacro " BUFFER Sl ZE',
resulting in

foo = (char *) xmalloc (1020);

The use of all upper case for nacro nanmes is a standard convention. Prograns
are easier to read when it is possible to tell at a glance which nanes are
macr os.

Normal Iy, a macro definition nust be a single line, like all C preprocessing
directives. (You can split a long macro definition cosnetically wth
Backsl ash-Newl i ne.) There is one exception: Newlines can be included in the
macro definition if within a string or character constant. This is because it
is not possible for a macro definition to contain an unbal anced quote
character; the definition automatically extends to include the matching quote
character that ends the string or character constant. Comments within a macro
definition may contain New ines, which make no difference since the coments
are entirely replaced with Spaces regardl ess of their contents.

Aside fromthe above, there is no restriction on what can go in a nacro
body. Parent heses need not bal ance. The body need not resenble valid C code.
(But if it does not, you nay get error nessages fromthe C conpiler when you
use the macro.)

The C preprocessor scans your program sequentially, so nmacro definitions
take effect at the place you wite them Therefore, the followng input to
the C preprocessor

http://www.contactor.se/~dast/fpl-old/cpp/macros_simple.HTML (1 of 2) [10/26/2004 3:25:06 PM]

Simple Macros

foo = X;
#define X 4
bar = X;

produces as out put
foo = X;
bar = 4;

After the preprocessor expands a nmacro nane, the macro's definition body is
appended to the front of the remaining input, and the check for macro calls
continues. Therefore, the macro body can contain calls to other macros. For
exanpl e, after

#defi ne BUFSI ZE 1020
#def i ne TABLESI ZE BUFSI ZE

t he nane " TABLESI ZE' when used in the program would go through two stages of
expansion, resulting ultimately in ~1020'.

This is not at all the sane as defining TABLESIZE to be 1020'. The
“#define' for “TABLESIZE uses exactly the body you specify--in this case,
"BUFSI ZE' - - and does not check to see whether it too is the nanme of a nacro.
It's only when you *use* "TABLESIZE that the result of its expansion is
checked for nore nacro nanes.

[Contents]

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_simple.HTML (2 of 2) [10/26/2004 3:25:06 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Macros

Macros

A macro is a sort of abbreviation which you can define once and then use
| ater. There are many conplicated features associated with macros in the C
pr epr ocessor.

Menu:

Si npl e Macr os Macros that al ways expand the sanme way.

Ar gunent Macr os Macros that accept argunents that are substituted
into the macro expansi on.

Pr edef i ned Predefi ned macros that are always avail abl e.

Stringification Macro argunents converted into string constants.

Concat enati on Bui | ding tokens from parts taken from macro argunents.

Undef i ni ng Cancelling a macro's definition.

Redef i ni ng Changing a macro's definition.

Macro Pitfalls Macros can confuse the unwary. Here we explain

several comon probl ens and strange features.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros.HTML [10/26/2004 3:25:07 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Macros with Arguments

Macros with Arguments

Macros with Argunents

A sinple macro al ways stands for exactly the sane text, each tinme it is
used. Macros can be nore flexible when they accept "argunments”. Argunents are
fragnments of code that you supply each tinme the macro is used. These fragnents
are included in the expansion of the macro according to the directions in the
macro definition. A macro that accepts argunents is called a "function-1ike
macr o” because the syntax for using it |ooks |like a function call

To define a macro that uses argunents, you wite a #define' directive with
a list of "argunment nanmes"” in parentheses after the nane of the macro. The
argunment names may be any valid Cidentifiers, separated by commas and
optionally whitespace. The open-parenthesis nust follow the nacro nane
i mredi ately, with no space in between.

For exanple, here is a macro that conputes the m ninmum of two nuneric
values, as it is defined in many C prograns:

#define mn(X Y) ((X) < (Y) ? (X : (V)

To use a macro that expects argunents, you wite the nane of the macro
followed by a list of "actual argunents" in parentheses, separated by commas.
The nunber of actual argunents you give nust match the nunber of argunents the
macro expects. Exanples of use of the macro "min' include "mn (1, 2)' and
‘mn (x + 28, *p)'.

The expansi on text of the macro depends on the argunents you use. Each of
t he argunent nanes of the macro is replaced, throughout the macro definition,
with the correspondi ng actual argunent. Using the same macro min' defined
above, "mn (1, 2)' expands into

((1) <(2) 2 (1) : (2)
where " 1' has been substituted for "X and "2' for "Y'.
Li kewi se, "min (x + 28, *p)' expands into
((x +28) < (*p) ? (x +28) : (*p))

Par ent heses in the actual argunents nust bal ance; a comma w thin parentheses
does not end an argunent. However, there is no requirenment for brackets or
braces to bal ance, and they do not prevent a comma from separating argunents.
Thus,

macro (array[x =y, x + 1])

http://www.contactor.se/~dast/fpl-old/cpp/macros_arguments.HTML (1 of 3) [10/26/2004 3:25:07 PM]

Macros with Arguments

passes two argunents to nmacro': "array[x =y' and x + 1]'. If you want to
supply “array[x =y, x + 1]' as an argunent, you nust wite it as "array[(x =
y, X + 1)]', which is equival ent C code.

After the actual argunents are substituted into the macro body, the entire
result is appended to the front of the remaining input, and the check for
macro calls continues. Therefore, the actual argunents can contain calls to
ot her macros, either with or without argunents, or even to the sanme macro. The
macro body can also contain calls to other macros. For exanple, mn (mn (a,
b), c)' expands into this text:

((((a) < (b) ? (a) : (b)) < (c)
? E(;;:l) < (b) ? (a) : (b))
5 C

(Li ne breaks shown here for clarity would not actually be generated.)

If a macro foo' takes one argunment, and you want to supply an enpty
argunment, you nust wite at | east sone whitespace between the parentheses,

like this: "foo ()'. Just foo ()' is providing no argunents, which is an
error if "foo' expects an argunent. But "fooO ()' is the correct way to cal
a macro defined to take zero argunents, like this:

#defi ne foo0()

I f you use the macro nane foll owed by sonething other than an
open-parenthesis (after ignoring any spaces, tabs and comments that follow),
it is not acall to the macro, and the preprocessor does not change what you
have witten. Therefore, it is possible for the sane nanme to be a variable or
function in your programas well as a macro, and you can choose in each
i nstance whether to refer to the macro (if an actual argunent |ist follows) or
the variable or function (if an argunent |ist does not follow).

Such dual use of one nane coul d be confusing and shoul d be avoi ded except
when the two neanings are effectively synonynous: that is, when the nane is
both a macro and a function and the two have simlar effects. You can think
of the name sinply as a function; use of the nane for purposes other than
calling it (such as, to take the address) will refer to the function, while
calls will expand the macro and generate better but equival ent code. For
exanpl e, you can use a function named "min' in the sanme source file that
defines the macro. If you wite "&mn" with no argunent |ist, you refer to the
function. If you wite "mn (x, bb)', with an argunment list, the macro is
expanded. If you wite (mn) (a, bb)', where the nane mn' is not followed
by an open-parenthesis, the macro is not expanded, so you wind up with a cal
to the function "mn'.

You may not define the same nanme as both a sinple macro and a macro with
argunent s.

http://www.contactor.se/~dast/fpl-old/cpp/macros_arguments.HTML (2 of 3) [10/26/2004 3:25:07 PM]

Macros with Arguments

In the definition of a macro with argunents, the list of argunment nanes nust
follow the macro nane imedi ately with no space in between. If there is a
space after the macro nane, the macro is defined as taking no argunents, and
all the rest of the line is taken to be the expansion. The reason for this is
that it is often useful to define a macro that takes no argunents and whose
definition begins with an identifier in parentheses. This rule about spaces
makes it possible for you to do either this:

#define FOO(x) - 1 / (x)

(which defines "FOO to take an argunment and expand into mnus the reciprocal
of that argunent) or this:

#define BAR (x) - 1/ (x)

(which defines "BAR to take no argunent and al ways expand into (x) - 1/

(x)").

Note that the *uses* of a macro with argunents can have spaces before the
| eft parenthesis; it's the *definition* where it matters whether there is a
space.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_arguments.HTML (3 of 3) [10/26/2004 3:25:07 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Predefined Macros

Predefined Macros

Pr edefi ned Macr os

Several sinple macros are predefined. You can use them w thout giving
definitions for them They fall into tw classes: standard nmacros and

system speci fic nacros.

Menu:
St andard Predefi ned St andard predefined nacros.
Nonst andard Predefi ned Nonst andar d predefi ned nacr os.

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_predefined.HTML [10/26/2004 3:25:08 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Standard Predefined Macros

Standard Predefined Macros

St andard Predefi ned Macros

The standard predefined macros are available with the sanme neani ngs
regardl ess of the machi ne or operating systemon which you are using the Frexx
cpp. Their nanes all start and end with doubl e underscores. The first four
defines in this table are standardi zed by ANSI C. The rest are Frexx
ext ensi ons.

" __FILE_
This macro expands to the nane of the current input file, in the
formof a C string constant. The precise nane returned is the one
that was specified in "#include' or as the input file nanme

argunment .

T LINE_
This macro expands to the current input |ine nunber, in the form
of a decimal integer constant. Wile we call it a predefined

macro, it's a pretty strange nmacro, since its "definition" changes
wi th each new |ine of source code.

This and ~__ _FILE ' are useful in generating an error nessage to
report an inconsistency detected by the program the nessage can
state the source line at which the inconsistency was detect ed.
For exanpl e,

fprintf (stderr, "Internal error:
"negative string |length

"0 at %, line %.",

length, __FILE , __ LINE_);

A " #include' directive changes the expansions of ° FILE ' and
" _LINE__" to correspond to the included file. At the end of that
file, when processing resunes on the input file that contained the

“#include' directive, the expansions of ~_ FILE ' and " __LINE_ '
revert to the values they had before the "#i nclude' (but
" __LINE__" is then increnented by one as processing noves to the

line after the "#include').

The expansions of both °~_ FILE ' and ~__LINE_ ' are altered if a
"#line' directive is used. Conbining Sources

*__DATE '
This macro expands to a string constant that describes the date on
whi ch the preprocessor is being run. The string constant contains
el even characters and | ooks |ike ""Jan 29 1987"' or ""Apr 1 1905"'.

http://www.contactor.se/~dast/fpl-old/cpp/macros_predefined_standard.HTML (1 of 2) [10/26/2004 3:25:08 PM]

Standard Predefined Macros

T TIME
This macro expands to a string constant that describes the tine at
whi ch the preprocessor is being run. The string constant contains
ei ght characters and | ooks like ""23:59:01"".

" FUNCTI ON__'
This macro expands to a nane of the currently processed function, in
the formof a C string constant.

" FUNC LINE_ '
This macro expands to the current function's starting |ine nunber, in
the formof a decimal integer constant.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_predefined_standard.HTML (2 of 2) [10/26/2004 3:25:08 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Combining Source Files

Combining Source Files

Combi ni ng Source Fil es

One of the jobs of the C preprocessor is to informthe C conpiler of where
each line of C code cane from which source file and which |ine nunber.

C code can cone fromnmultiple source files if you use " #include'; both
“#include' and the use of conditionals and nmacros can cause the |ine nunber of
aline in the preprocessor output to be different fromthe line's nunber in
the original source file. You will appreciate the value of nmeking both the C
conpiler (in error nmessages) and synbolic debuggers such as GDB use the |ine
nunbers in your source file.

The C preprocessor builds on this feature by offering a directive by which
you can control the feature explicitly. This is useful when a file for input
to the C preprocessor is the output from another program such as the " bison’
parser generator, which operates on another file that is the true source file.
Parts of the output from " bison' are generated from scratch, other parts cone
froma standard parser file. The rest are copied nearly verbatimfromthe
source file, but their line nunbers in the "bison'" output are not the sane as
their original |ine nunbers. Naturally you would |ike conpiler error nessages
and synbol i c debuggers to know the original source file and |ine nunber of
each line in the "bison" input.

“bison' arranges this by witing #line' directives into the output file.
"#line' is a directive that specifies the original |ine nunber and source file
nane for subsequent input in the current preprocessor input file. “#line has
three variants:

“#line LI NENUM
Here LINENUM is a decimal integer constant. This specifies that
the |ine nunber of the followng Iine of input, in its original
source file, was LI NENUM

“#l i ne LI NENUM FI LENAME
Here LINENUM is a decinmal integer constant and FILENAME is a
string constant. This specifies that the follow ng |ine of input
came originally fromsource file FILENAME and its |ine nunber there
was LINENUM Keep in mind that FILENAVE is not just a file nane;
it is surrounded by doubl equote characters so that it |ooks |ike a
string constant.

“#1ine ANYTHI NG ELSE
ANYTHI NG ELSE i s checked for nmacro calls, which are expanded. The
result should be a deciml integer constant foll owed optionally by
a string constant, as descri bed above.

http://www.contactor.se/~dast/fpl-old/cpp/combine.HTML (1 of 2) [10/26/2004 3:25:09 PM]

Combining Source Files

"#line' directives alter the results of the ~__FILE ' and ~__LINE_ '
predefi ned macros fromthat point on. SEE 'Standard Predefined Synbols'.

The out put of the preprocessor (which is the input for the rest of the
conpiler) contains directives that | ook nuch like “#line' directives. They
start with just "# instead of "#line', but this is followed by a |ine nunber
and file name as in "#line'.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/combine.HTML (2 of 2) [10/26/2004 3:25:09 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Nonstandard Predefined Macros

Nonst andard Predefi ned Macros

The C preprocessor normally has several predefined macros that vary between
machi nes because their purpose is to indicate what type of system and nmachi ne
Is in use. This manual, being for all systens and nmachi nes, cannot tell you
exactly what their nanes are; instead, we offer a |list of sonme typical ones.

Some nonst andard predefined nmacros describe the operating systemin use,
with nore or | ess specificity. The Frexx cpp has not been w dely devel oped in

this area, why only a few synbols are offered

“uni x'
“unix' is normally predefined on all Unix systens.

‘am ga' 'am gados
‘amiga' and 'amigados' is nornmally predefined on all Anm ga systens.

" m68000"
"nb68000" is predefined on nost conputers whose CPU is a Mdtorol a

680x0.

These predefined synbols are not only nonstandard, they are contrary to the
ANS|I standard because their nanes do not start wth underscores.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_predefined_nonstandard. HTML [10/26/2004 3:25:10 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Macro Stringification

Macro Stringification

Stringification

"Stringification” nmeans turning a code fragnent into a string constant whose
contents are the text for the code fragnment. For exanple, stringifying foo
(z)" results in "

foo (z)"'.

In the C preprocessor, stringification is an option avail abl e when macro
argunents are substituted into the macro definition. |In the body of the
definition, when an argunent name appears, the character "# before the nane
specifies stringification of the corresponding actual argunent when it is
substituted at that point in the definition. The sane argunment nay be
substituted in other places in the definition without stringification if the
argurment nanme appears in those places with no "#'.

Here is an exanple of a macro definition that uses stringification:

#defi ne WARN | F(EXP) \
do { if (EXP) \

fprintf (stderr, "Warning: " #EXP "\n"); } \
whi l e (0)

Here the actual argunent for "EXP' is substituted once as given, into the "if'
statenent, and once as stringified, into the argunent to fprintf'. The "do
and "while (0)' are a kludge to nmake it possible to wite WARN IF (ARG ;"',
whi ch the resenbl ance of WARN IF' to a function would make C progranmers want
to do; see Swal |l ow Sem col on

The stringification feature is limted to transform ng one macro ar gunent
into one string constant: there is no way to conbine the argunment w th other
text and then stringify it all together. But the exanple above shows how an
equi val ent result can be obtained in ANSI Standard C using the feature that
adj acent string constants are concatenated as one string constant. The
preprocessor stringifies the actual value of "EXP' into a separate string
constant, resulting in text |ike

do { if (x == 0) \
fprintf (stderr, "Warning: " "x == 0" "\n"); } \
whi l e (0)

but the C conpiler then sees three consecutive string constants and
concatenates theminto one, producing effectively

do { if (x == 0) \

fprintf (stderr, "Warning: x == 0\n"); } \
whi l e (0)

http://www.contactor.se/~dast/fpl-old/cpp/macros_stringification.HTML (1 of 2) [10/26/2004 3:25:10 PM]

Macro Stringification

Stringification in Cinvolves nore than putting doubl equote characters
around the fragnent; it is necessary to put backslashes in front of al
doubl equote characters, and all backslashes in string and character constants,
in order to get a valid C string constant with the proper contents. Thus,
stringifying p = "foo\n";" results in ""p =\"foo\\n\";"'. However,
backsl ashes that are not inside of string or character constants are not
duplicated: "\n' by itself stringifies to "\n"'.

Whi t espace (including conmments) in the text being stringified is handl ed
according to precise rules. Al leading and trailing whitespace is ignored.
Any sequence of whitespace in the mddle of the text is converted to a single
space in the stringified result.

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_stringification.HTML (2 of 2) [10/26/2004 3:25:10 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Swallowing the Semicolon

Swal | owi ng the Sem col on

Oten it is desirable to define a macro that expands into a conpound
statenment. Consider, for exanple, the follow ng nacro, that advances a
poi nter (the argunent "p' says where to find it) across whitespace
characters:

#define SKIP_SPACES (p, Iimt) \
{ register char *Iim= (limt); \
while (p!=1im { \
If (*pt+ 1= ") { \

p--; break; }}}

Her e Backsl ash-Newine is used to split the nmacro definition, which nust be a
single line, so that it resenbles the way such C code would be laid out if not
part of a nmacro definition.

A call to this nacro might be "SKIP SPACES (p, |im'. Strictly speaking,
the call expands to a conpound statenent, which is a conplete statement with
no need for a semcolon to end it. But it |looks like a function call. So it
m nim zes confusion if you can use it like a function call, witing a
sem colon afterward, as in " SKIP_SPACES (p, |im;

But this can cause trouble before "else' statenents, because the sem col on
is actually a null statenent. Suppose you wite

if (*p !'=0)
SKI P_SPACES (p, Iim;
el se ...

The presence of two statenents--the conmpound statenment and a nul
statenent--in between the "if' condition and the "else' makes invalid C code.

The definition of the macro " SKIP_SPACES' can be altered to solve this
problem using a do ... while' statenent. Here is how

#define SKIP_SPACES (p, limt) \
do { register char *lim= (limt); \
while (p!=1im { \
i (rp++t =" ") | \
p--; break; }}} \

whi | e (0)

Now " SKI P_SPACES (p, linm;' expands into

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_swallow.HTML (1 of 2) [10/26/2004 3:25:10 PM]

Swallowing the Semicolon
do {...} while (0);

which i s one statenent.

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_swallow.HTML (2 of 2) [10/26/2004 3:25:10 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Macro Concatenation

Macro Concatenation

Concat enati on

"Concatenation” nmeans joining two strings into one. 1In the context of macro
expansi on, concatenation refers to joining two lexical units into one | onger
one. Specifically, an actual argunment to the macro can be concatenated with
anot her actual argunent or with fixed text to produce a | onger nane. The
| onger nanme m ght be the nane of a function, variable or type, or a C keyword,;
it mght even be the nane of another nmacro, in which case it will be
expanded.

When you define a nacro, you request concatenation with the special operator
“##' in the macro body. Wen the macro is called, after actual argunments are
substituted, all “##' operators are deleted, and so is any whitespace next to
t hem (i ncl udi ng whitespace that was part of an actual argument). The result
is to concatenate the syntactic tokens on either side of the "##' .

Consider a C programthat interprets naned commands. There probably needs
to be a table of commands, perhaps an array of structures declared as
fol | ows:

struct command

{

char *nane;

void (*function) ();

b

struct command conmands|[] =
{

{ "quit", quit_conmand},

{ "hel p", hel p_conmand},

};...

It would be cleaner not to have to give each command nane twi ce, once in the
string constant and once in the function nane. A macro which takes the nane
of a command as an argunent can make this unnecessary. The string constant
can be created with stringification, and the function nane by concatenati ng
the argunent with ~ conmand'. Here is how it is done:

#defi ne COMVAND(NAME) { #NAME, NAME ## _command }

struct command conmands[] =

{
COVMMAND (qui t),
COWWAND (hel p),

http://www.contactor.se/~dast/fpl-old/cpp/macros_concatenation.HTML (1 of 2) [10/26/2004 3:25:11 PM]

Macro Concatenation

};...

The usual case of concatenation is concatenating two nanes (or a nanme and a
nunber) into a longer nane. But this isn't the only valid case. It is also
possi ble to concatenate two nunbers (or a nunber and a nanme, such as 1.5 and
"e3'") into a nunber. Also, nulti-character operators such as " +=' can be
formed by concatenation. |In sone cases it is even possible to piece together
a string constant. However, two pieces of text that don't together forma
valid lexical unit cannot be concatenated. For exanple, concatenation with
X" on one side and "+ on the other is not neani ngful because those two
characters can't fit together in any lexical unit of C The ANSI standard
says that such attenpts at concatenation are undefined, but in the Frexx C
preprocessor it is well defined: it puts the "x' and "+ side by side with no
particul ar special results.

Keep in mnd that the C preprocessor converts comments to whitespace before
macr os are even considered. Therefore, you cannot create a comment by
concatenating /' and "*': the /*' sequence that starts a coment is not a
| exical unit, but rather the beginning of a "long" space character. Also, you
can freely use coments next to a ##' in a nmacro definition, or in actual

argunents that will be concatenated, because the comments will be converted to
spaces at first sight, and concatenation will later discard the spaces.
NOTE:

The order of concatenation/macro expantion is unspecified in the ANSI
standard. If the right parts itself is a defined string, it is not known
wheat her the defined string will be expanded before the concatenation or if
t he concatenation is done first.

Most ANSI conpilers first append the "real"” words and so does the Frexx C
preprocessor as long as -Risn't specified. If -Ris specified, the right part
of the concat is first subject to substitution, and then append is done, to
still be conpatible with certain sources.

Exanpl e:

#def i ne FOOBAR f 00BAR
#defi ne append(x,y) X ## vy
#def i ne BAR bar

append(FOO, BAR)

Result without -R fo0oBAR
Result wth -R FOnar

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_concatenation.HTML (2 of 2) [10/26/2004 3:25:11 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Undefining Macros

Undefining Macros

Undefi ni ng Macr os

To "undefine" a nmacro neans to cancel its definition. This is done with the
"#undef' directive. "#undef' is followed by the nmacro nane to be undefi ned.

Li ke definition, undefinition occurs at a specific point in the source file,
and it applies starting fromthat point. The name ceases to be a nmacro nane,
and fromthat point on it is treated by the preprocessor as if it had never
been a nmacro nane.

For exanpl e,

#defi ne FOO 4

X = FOG
#undef FOO
x = FOO

expands into
X = 4;
x = FQOQ

In this exanple, "FOO had better be a variable or function as well as
(tenmporarily) a macro, in order for the result of the expansion to be valid C
code.

The same form of “#undef' directive will cancel definitions with argunents
or definitions that don't expect argunents. The "#undef' directive has no
ef fect when used on a nane not currently defined as a macro.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_undefining. HTML [10/26/2004 3:25:12 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Redefining Macros

Redef i ni ng Macr os

"Redefining" a macro neans defining (with "#define') a nane that is already
defined as a nmacro.

A redefinitionis trivial if the new definition is transparently identica
to the old one. You probably wouldn't deliberately wite a trivial
redefinition, but they can happen autonmatically when a header file is included
nore than once, so they are accepted silently and w thout effect.

Nontrivial redefinition is considered likely to be an error, so it provokes
a warni ng nessage fromthe preprocessor. However, sonetimes it is useful to
change the definition of a macro in md-conpilation. You can inhibit the
war ni ng by undefining the macro with "“#undef' before the second definition.

In order for a redefinition to be trivial, the new definition nust exactly
match the one already in effect, with two possi bl e excepti ons:

* Wit espace may be added or deleted at the beginning or the end.

* Wi tespace may be changed in the mddle (but not inside strings).
However, it may not be elimnated entirely, and it may not be added
where there was no whitespace at all

Recal | that a comrent counts as whitespace.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_redefining.HTML [10/26/2004 3:25:12 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Pitfalls and Subtleties of Macros

Pitfalls and Subtleties of Macros

Pitfalls and Subtleties of Mucros

In this section we describe sone special rules that apply to nacros and
macr o expansi on, and point out certain cases in which the rules have
counterintuitive consequences that you nust watch out for.

Menu

M snesti ng Macros can contai n unmat ched par ent heses.
Macr o Par ent heses Wy apparently superfl uous parent heses

may be necessary to avoid incorrect grouping.
Swal | ow Semi col on Macros that | ook |ike functions

but expand into conpound statenents.

Side Effects Unsaf e macros that cause troubl e when
argunents contain side effects.
Sel f - Ref erence Macr os whose definitions use the nacros' own nanes.
Argunent Prescan Actual argunents are checked for macro calls
before they are substituted.
Cascaded Macr os Macr os whose definitions use other nacros.
Newl i nes in Args Sonetinmes |ine nunbers get confused.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls. HTML [10/26/2004 3:25:12 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Header Files

Header Files

A header file is a file containing C declarations and nacro definitions to
be shared between several source files. You request the use of a header file
in your programw th the C preprocessing directive " #include'.

Menu:

Header Uses What header files are used for.

| ncl ude Synt ax How to wite "#include' directives.

I ncl ude Operation What ~ #i ncl ude' does.

Once-Only Preventing nultiple inclusion of one header file.
| nheritance I ncl udi ng one header file in another header file.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/header_files.HTML [10/26/2004 3:25:13 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Uses of Header Files

Uses of Header Files

Uses of Header Files

Header files serve two kinds of purposes.

* System header files declare the interfaces to parts of the
operating system You include themin your programto supply the
definitions and decl arati ons you need to i nvoke systemcalls and
l'ibraries.

* Your own header files contain declarations for interfaces between
the source files of your program Each tinme you have a group of
rel at ed declarations and macro definitions all or npst of which
are needed in several different source files, it is a good idea to
create a header file for them

I ncl uding a header file produces the sane results in C conpilation as
copying the header file into each source file that needs it. But such copying
woul d be tine-consum ng and error-prone. Wth a header file, the rel ated
decl arati ons appear in only one place. |f they need to be changed, they can
be changed in one place, and prograns that include the header file wll
automatically use the new version when next reconpiled. The header file
elimnates the | abor of finding and changing all the copies as well as the
risk that a failure to find one copy will result in inconsistencies within a
progr am

The usual convention is to give header files nanes that end with . h'.
Avoi d unusual characters in header file nanmes, as they reduce portability.

[Contents]

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/header_uses.HTML [10/26/2004 3:25:13 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

The '#include' Directive

The '#include' Directive

The "#include' Directive

Bot h user and system header files are included using the preprocessing
directive "#include'. It has three variants:

“#i ncl ude <FI LE>
This variant is used for system header files. It searches for a
file named FILE in a list of directories specified by you, then in
a standard list of systemdirectories. You specify directories to
search for header files with the command option "-I' (lnvocation).

The parsing of this formof “#include' is slightly special because
comrents are not recognized within the "<...> . Thus, in
“#include <x/*y>'" the /*' does not start a comment and the
directive specifies inclusion of a system header file naned
“x/*y'. O course, a header file with such a nane is unlikely to
exi st on Uni x, where shell wldcard features would make it hard to
mani pul at e.

The argunent FILE may not contain a "> character. It may,
however, contain a "< character.

"#include "FILE"'
This variant is used for header files of your own program |t
searches for a file naned FILE first in the current directory,
then in the sane directories used for system header files. The

current directory is the directory of the current input file. It
Is tried first because it is presuned to be the |ocation of the
files that the current input file refers to. (If the -1-' option
Is used, the special treatnent of the current directory is

i nhibited.)

The argunment FILE may not contain "' characters. |f backsl ashes

occur wthin FILE, they are considered ordinary text characters,
not escape characters. None of the character escape sequences
appropriate to string constants in C are processed. Thus,
“#include "x\n\\y"' specifies a filenane containing three

backsl ashes. It is not clear why this behavior is ever useful, but
the ANSI standard specifies it.

“#i ncl ude ANYTHI NG ELSE

http://www.contactor.se/~dast/fpl-old/cpp/header_include.HTML (1 of 2) [10/26/2004 3:25:14 PM]

The '#include' Directive

This variant is called a "conputed #i nclude". Any " #include'
directive whose argunent does not fit the above two fornms is a
conmputed include. The text ANYTH NG ELSE is checked for macro
calls, which are expanded. Wen this is done, the result nust fit
one of the above two variants--in particular, the expanded text
must in the end be surrounded by either quotes or angle braces.

This feature allows you to define a macro which controls the file
name to be used at a later point in the program One application
of this is to allow a site-specific configuration file for your
programto specify the nanes of the systeminclude files to be
used. This can help in porting the programto various operating
systens in which the necessary system header files are found in
di fferent places.

[Contents]

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/header_include.HTML (2 of 2) [10/26/2004 3:25:14 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Invoking the C Preprocessor

Invoking the C Preprocessor

I nvoki ng the C Preprocessor

Most often when you use the C preprocessor you will not have to invoke it
explicitly: the C conpiler will do so automatically. However, the preprocessor
is sonetimes useful on its own.

The C preprocessor expects two file nanes as argunents, |NFILE and OUTFI LE.
The preprocessor reads |INFILE together wwth any other files it specifies with

“#include'. Al the output generated by the conbined input files is witten
in OQUTFI LE
Ei ther I NFILE or OUTFILE may be "-', which as INFILE neans to read from

standard i nput and as OUTFILE neans to wite to standard output. Also, if
QUTFI LE or both file nanes are omtted, the standard output and standard i nput
are used for the omtted file names.

These options are recogni zed by the Frexx C preprocessor:

-B CPP normally predefines sone synbols defining the target conputer

and operating system |If -Bis specified, no such synbols will be
pr edef i ned.
-b Warnings wll be displayed if there isn't as nany open as cl ose

characters of the parentheses, brackets and braces synbol s.

-C If set, source-file corments are witten to the output. This
allows the output of CPP to be used as the input to a program
such as |int, that expects comands enbedded in specially-
formatted conmments.

- Dnane=val ue Define the nane as if the programer wote
#defi ne name val ue
at the start of the first file. If "=value" is not
gi ven, a value of "1" will be used.
-d D splay all given options, including input and output files.

-E Always return "success" to the operating system even if errors
were detected. Note that some fatal errors will term nate CPP,
returning "failure"” even if the -E option is given

-F Print the pathnanmes of included files, one per |ine on the
standard error.

http://www.contactor.se/~dast/fpl-old/cpp/invoke.HTML (1 of 4) [10/26/2004 3:25:15 PM]

Invoking the C Preprocessor

-H Try to keep all whitespaces as found in the source. This is useful
when you want an output using the sane indent as the source has.

O herwi se, any nunber of whitespaces will be replaced with
singl e space (' ').

-h Qutput help text.

-ldirectory Add this directory to the |Iist of directories

sear ched for #include "..." and #incl ude
commands. Note that there is no space between the

and the directory string (that nust end with a slash

"/'"). More than one -1 command is permtted.
-J Allow nested conments.

-j Warn whenever a nested comrent is discovered.

-LL Preprocesses input without producing line control information for
the next pass of the C conpiler. This also produces an output

W t hout unnecessary enpty |ines.
-L CQutput "# <line>" prior to "#line <line>"

-M Disabl e warni ngs when an include file isn't found.

-N If this is specified, the "always present"” synbols, LINE ,
__FILE _, __TIME_, DATE , _ FUNCTION _and _ FUNC LINE_ are

not defi ned.

-P Do not recogni ze and renove C++ style conments.

-p Enable warnings on non ANSI preprocessor instructions. Wen this
option is enabled, all #-keywrds that are not specified in the

ANS| standard X3J11 will be reported wi th warnings.

-Q Makes cpp ignore and visualize all unrecognized flags. This flag
was i nplenented to make it possible to use ny cpp with the default
Al X ‘'cc' conpiler. Si nce that conpiler always calls
preprocessor wth sone other flags not identified by
conpiler, | had to do this..

-g Sane as -Q but silent. Nothing is output when unknown options are

i gnor ed.

-R In situations where concatenated nmacros are used |ike:
#def i ne FOOBAR f 00BAR
#defi ne append(x,y) x ## vy
#def i ne BAR bar

http://www.contactor.se/~dast/fpl-old/cpp/invoke.HTML (2 of 4) [10/26/2004 3:25:15 PM]

Invoking the C Preprocessor

append(FOO, BAR)

Result wthout -R fooBAR
Result with -R FOObar

It is wunspecified in the ANSI draft in which order to evaluate
this. Should the "real" second word first be appended before the
macro substitution occurs, or should the word get subsitituted
first? Most ANSI conpilers first append the "real"™ words and
does 'cpp' if -Risn't specified. If -R is specified, the right
part of the concat is first subject to substitution, and then

append i s done.

-Stext cpp normally assunmes that thesize of the target conputer's

basic variable types is the sane as the size of

types of the host conputer. The -S option allows dynamc
respecification of these values. "text" is a string of
nunbers, separated by conmmas, that specifies correct sizes.

The sizes nust be specified in the exact order:
char short int |long float double

| f you specify the option as "-S*text", pointers to

types will be specified. -S* takes one additional argunent

for pointer to function (e.g. int (*)())

For exanple, to specify sizes appropriate for a PDP-11, you

would wite:

csi | f dfunc
-S1,2,2,2,4,8,
-S§%2,2,2,2,2,2,2

Note that *ALL* val ues nust be specified.
-Unanme Undefine the nanme as if
#undef nane
wer e given.
-V Do not output the version information at startup.
-W Qutputs all #defines at the end of the output file.
-w Only output #defines and nothing el se.

-X #lncludes the specified file at the top of the source file.

http://www.contactor.se/~dast/fpl-old/cpp/invoke.HTML (3 of 4) [10/26/2004 3:25:15 PM]

Invoking the C Preprocessor

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/invoke.HTML (4 of 4) [10/26/2004 3:25:15 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

How '#include' works

How '#include' works

How " #i ncl ude' Wor ks

The " #include' directive works by directing the C preprocessor to scan the
specified file as input before continuing with the rest of the current file.
The output fromthe preprocessor contains the output already generated,
foll owed by the output resulting fromthe included file, followed by the
out put that comes fromthe text after the "#include' directive. For exanple,
given a header file "header.h' as foll ows,

char *test ();
and a main programcalled "programc' that uses the header file, like this,

int Xx;
#i ncl ude "header. h"

main ()

{
}

t he out put generated by the C preprocessor for "programc' as input would be

printf (test ());

int X;
char *test ();

main ()

{
}

Included files are not limted to declarations and macro definitions; those
are nerely the typical uses. Any fragnent of a C program can be included from
another file. The include file could even contain the beginning of a statenent
that is concluded in the containing file, or the end of a statenent that was
started in the including file. However, a conment or a string or character
constant may not start in the included file and finish in the including file.
An unterm nated conment, string constant or character constant in an included
file is considered to end (wth an error nessage) at the end of the file.

printf (test ());

It is possible for a header file to begin or end a syntactic unit such as a
function definition, but that would be very confusing, so don't do it.

The line following the "#include' directive is always treated as a separate
line by the C preprocessor even if the included file |acks a final newine.

http://www.contactor.se/~dast/fpl-old/cpp/header_include_ops.HTML (1 of 2) [10/26/2004 3:25:15 PM]

How '#include' works

[Contents]

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/header_include_ops.HTML (2 of 2) [10/26/2004 3:25:15 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Once-Only Include Files

Once-Only Include Files

Once-Only Include Files

Very often, one header file includes another. It can easily result that a
certain header file is included nore than once. This may lead to errors, if
the header file defines structure types or typedefs, and is certainly
wast eful . Therefore, we often wish to prevent nmultiple inclusion of a header
file.

The standard way to do this is to enclose the entire real contents of the
file in a conditional, |ike this:

#i f ndef FI LE_FOO SEEN
#define FI LE_FOO SEEN

THE ENTI RE FI LE
#endi f /* FILE_FOO SEEN */

The macro "FILE FOO SEEN indicates that the file has been included once
already. In a user header file, the macro name should not begin with = _' In
a system header file, this name should begin with ~__ ' to avoid conflicts with
user prograns. In any kind of header file, the macro nane should contain the
name of the file and sone additional text, to avoid conflicts with other
header files.

[Contents]

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/header_onceonly.HTML [10/26/2004 3:25:15 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Inheritance and Header Files

Inheritance and Header Files

| nheritance and Header Files

"I nheritance" is what happens when one object or file derives sonme of its
contents by virtual copying from another object or file. In the case of C
header files, inheritance neans that one header file includes another header
file and then repl aces or adds sonet hi ng.

If the inheriting header file and the base header file have different nanes,
then inheritance is straightforward: sinply wite “#include "BASE"' in the
inheriting file.

Sonmetinmes it is necessary to give the inheriting file the sane nane as the
base file. This is |ess straightforward.

For exanpl e, suppose an application program uses the system header file
"sys/signal.h', but the version of “/usr/include/sys/signal.h" on a particular
system doesn't do what the application program expects. It mght be conveni ent
to define a "local" version, perhaps under the nane
“/usr/local/include/sys/signal.h', to override or add to the one supplied by
the system

You can do this by using the option "-I." for conpilation, and witing a
file “sys/signal.h' that does what the application program expects. But
making this file include the standard “sys/signal.h' is not so easy--witing
“#include <sys/signal.h> in that file doesn't work, because it includes your
own version of the file, not the standard systemversion. Used in that file
itself, this leads to an infinite recursion and a fatal error in conpilation.

“#include </usr/include/sys/signal.h> would find the proper file, but that
is not clean, since it nakes an assunption about where the system header file
is found. This is bad for maintenance, since it neans that any change in
where the systenis header files are kept requires a change sonewhere el se.

The clean way to solve this problemis to use "#include_next', which neans,
“I'nclude the *next* file wwth this nanme." This directive works |ike
“#include' except in searching for the specified file: it starts searching the
list of header file directories *after* the directory in which the current
file was found.

Suppose you specify "-1 /usr/local/include', and the |ist of directories to
search al so includes "/usr/include'; and suppose that both directories contain
a file named "sys/signal.h'. Odinary "#i nclude <sys/signal.h> finds the
file under “/usr/local/include' . If that file contains "#i nclude_next
<sys/signal.h>", it starts searching after that directory, and finds the file
in “/usr/include'.

http://www.contactor.se/~dast/fpl-old/cpp/header_inheritance.HTML (1 of 2) [10/26/2004 3:25:16 PM]

Inheritance and Header Files

[Contents]

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/header_inheritance.HTML (2 of 2) [10/26/2004 3:25:16 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Conditionals

Conditionals

Condi ti onal s

In a macro processor, a "conditional" is a directive that allows a part of
the programto be ignored during conpilation, on sone conditions. 1In the C
preprocessor, a conditional can test either an arithmetic expression or
whet her a nanme is defined as a nacro.

A conditional in the C preprocessor resenbles in sone ways an if' statenent
in C but it is inportant to understand the difference between them The
condition in an "if' statenent is tested during the execution of your program
Its purpose is to allow your programto behave differently fromrun to run,
depending on the data it is operating on. The condition in a preprocessing
conditional directive is tested when your programis conpiled. |Its purpose is
to allow different code to be included in the program dependi ng on the
situation at the tinme of conpilation.

Uses What conditionals are for

Synt ax How conditionals are witten.

Del eti on Maki ng code into a comment.

Macr os Way conditionals are used with macros.
Assertions How and why to use asserti ons.

Errors (#error Directive) Detecting inconsistent conpilation paraneters.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/conditional. HTML [10/26/2004 3:25:16 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Why Conditionals are Used

Why Conditionals are Used

Wiy Conditionals are Used

Cenerally there are three kinds of reason to use a conditional.

*

*

A program may need to use different code depending on the machine
or operating systemit is to run on. In sonme cases the code for
one operating system nmay be erroneous on anot her operating system
for exanple, it mght refer to library routines that do not exist
on the other system \Wen this happens, it is not enough to avoid
executing the invalid code: nerely having it in the program nmakes
it inpossible to link the programand run it. Wth a

preprocessi ng conditional, the offending code can be effectively
excised fromthe programwhen it is not valid.

You may want to be able to conpile the same source file into two

di fferent prograns. Sonetines the difference between the prograns
is that one makes frequent tine-consum ng consi stency checks on its
intermedi ate data, or prints the values of those data for
debuggi ng, while the other does not.

A conditional whose condition is always false is a good way to
exclude code fromthe programbut keep it as a sort of comrent for
future reference.

Most sinple prograns that are intended to run on only one machine wl |
need to use preprocessing conditionals.

not

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/cond_why.HTML [10/26/2004 3:25:17 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Syntax of Conditionals

Syntax of Conditionals

Syntax of Conditionals

A conditional in the C preprocessor begins with a "conditional directive":
“#if', “#ifdef' or “#ifndef'. See Conditional s-Macros, for information on
“#ifdef' and " #ifndef'; only "#if' is explained here.

Menu:
If: #if Directive. Basic conditionals using #if' and " #endif'.

El se: #else Directive. Including sone text if the condition fails.
Elif: #elif Drective. Testing several alternative possibilities.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/cond_syntax.HTML [10/26/2004 3:25:17 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Keeping Deleted Code for Future Reference

Keeping Deleted Code for Future Reference

Keepi ng Del eted Code for Future Reference

If you replace or delete a part of the program but want to keep the old code
around as a comment for future reference, the easy way to do this is to put
“#if 0" before it and "#endif' after it. This is better than using conment
delimters "/*" and "*/' since those won't work if the code already contains
coments (C comments do not nest).

This works even if the code being turned off contains conditionals, but they
nmust be entire conditionals (balanced "#i f' and #endif').

Conversely, do not use "#if 0" for comrents which are not C code. Use the
comment delimters "/*' and "*/' instead. The interior of "#if 0" nust consi st
of conplete tokens; in particular, singlequote characters nust bal ance. But
comments often contain unbal anced singl equote characters (known in English as
apostrophes). These confuse #if 0'. They do not confuse "/*'.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/cond_keepdeleted. HTML [10/26/2004 3:25:18 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Conditionals and Macros

Conditionals and Macros

Condi ti onal s and Macr os

Condi tionals are useful in connection with macros or assertions, because
those are the only ways that an expression's value can vary from one
conpilation to another. A "#if' directive whose expressi on uses no nacros or
assertions is equivalent to "#if 1' or #f 0'; you mght as well determ ne
whi ch one, by computing the value of the expression yourself, and then
sinplify the program

For exanple, here is a conditional that tests the expression " BUFSI ZE ==
1020', where "BUFSIZE' nust be a macro.

#i f BUFSI ZE == 1020
printf ("Large buffers!\n");
#endif /* BUFSIZE is large */

(Programrers often wi sh they could test the size of a variable or data type
in #if', but even if this isn't ANSI specified behaviour, the Frexx C
preprocessor understands " sizeof'.)

The special operator "defined is used in #if' expressions to test whether
a certain nane is defined as a macro. Either "defined NAME or " defined
(NAME) ' is an expression whose value is 1 if NAVE is defined as nacro at the
current point in the program and 0O otherwi se. For the "defined operator it
makes no difference what the definition of the macro is; all that matters is
whet her there is a definition. Thus, for exanple,

#if defined (vax) || defined (ns16000)

woul d succeed if either of the names "vax' and ns16000' is defined as a
macro. You can test the sanme condition using assertions (Assertions), |ike

this:

#if #cpu (vax) || #cpu (ns16000)

If a macro is defined and | ater undefined with ~#undef', subsequent use of
the "defined operator returns 0, because the nane is no |onger defined. |If
the macro is defined again with another "“#define', “defined" will reconmence
returning 1.

Conditionals that test whether just one nane is defined are very common, SO
there are two special short conditional directives for this case.

“#i fdef NAME
is equivalent to #if defined (NAME)'

http://www.contactor.se/~dast/fpl-old/cpp/cond_macros.HTML (1 of 2) [10/26/2004 3:25:19 PM]

Conditionals and Macros

“#i fndef NAME
is equivalent to #if ! defined (NAME)'.

Macro definitions can vary between conpilations for several reasons.

* Some macros are predefined on each kind of machine. For exanple,
on a Vax, the nane "vax' is a predefined macro. On ot her
machi nes, it would not be defi ned.

* Many nore macros are defined by system header files. Different
systens and nmachi nes define different nacros, or give them
different values. It is useful to test these macros wth
conditionals to avoid using a systemfeature on a machi ne where it
I's not inplenented.

* Macros are a common way of allow ng users to custom ze a program
for different machines or applications. For exanple, the macro
"BUFSI ZE' might be defined in a configuration file for your
programthat is included as a header file in each source file. You
woul d use "BUFSIZE' in a preprocessing conditional in order to
generate different code depending on the chosen configuration.

* Macros can be defined or undefined with "-D and "-U conmand
opti ons when you conpile the program You can arrange to conpile
the sanme source file into two different progranms by choosing a
macro name to specify which programyou want, witing conditionals
to test whether or how this macro is defined, and then controlling
the state of the macro with conpil er comand options. | nvocation

Assertions are usually predefined, but can be defined wth preprocessor
directives or conmand-|ine options.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/cond_macros.HTML (2 of 2) [10/26/2004 3:25:19 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Assertions

Assertions

Assertions

Not inplenented in the Frexx C preprocessor!

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/cond_assert. HTML [10/26/2004 3:25:19 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

The #error and #warning Directives

The #error and #warning Directives

The “#error' and #warning' Directives

The directive #error' causes the preprocessor to report a fatal error. The
rest of the line that follows "#error' is used as the error nessage.

You woul d use "#error' inside of a conditional that detects a conbination of
paraneters whi ch you know t he program does not properly support. For exanpl e,
i f you know that the programw Il not run properly on a Vax, you mght wite

#i fdef _ vax__
#error Wn't work on Vaxen. See comments at get | ast _object.
#endi f

See ' Nonst andard Predefined Synbols', for why this works.

I f you have several configuration paraneters that nust be set up by the
installation in a consistent way, you can use conditionals to detect an
i nconsi stency and report it with #error'. For exanple,

#if HASH TABLE SIZE %2 == 0 || HASH TABLE SIZE % 3 == 0 \

|| HASH TABLE SIZE %5 == 0
#error HASH TABLE_SI ZE shoul d not be divisible by a small prine
#endi f

The directive #warning' is like the directive #error', but causes the
preprocessor to issue a warning and continue preprocessing. The rest of the
line that follows "#warning' is used as the warning nessage.

You might use "#warning' in obsolete header files, with a nessage directing
the user to the header file which should be used i nstead.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/cond_error. HTML [10/26/2004 3:25:20 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Miscellaneous Preprocessing Directives

Miscellaneous Preprocessing Directives

M scel | aneous Preprocessing Directives

This section describes three additional preprocessing directives. They are
not very useful, but are nentioned for conpleteness.

The "null directive" consists of a # followed by a Newine, with only
whi t espace (including comments) in between. A null directive is understood as
a preprocessing directive but has no effect on the preprocessor output. The
primary significance of the existence of the null directive is that an input
line consisting of just a "# wll produce no output, rather than a |line of
out put containing just a "#' . Supposedly sonme old C prograns contain such
l i nes.

The ANSI standard specifies that the "#pragm' directive has an arbitrary,
i npl enent ati on-defined effect. In the Frexx C preprocessor, #pragng'
directives are not used. However, they are left in the preprocessor output, so
they are available to the conpil ation pass.

The "#ident' directive is supported for conpatibility with certain other
systens. It is followed by a line of text. On sone systens, the text is
copied into a special place in the object file; on nbst systens, the text is
ignored and this directive has no effect. Typically #ident' is only used in
header files supplied with those systens where it is neaningful.

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/other.HTML [10/26/2004 3:25:20 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

C Preprocessor Output

C Preprocessor Output

C Preprocessor Qutput

The output fromthe C preprocessor | ooks nuch |ike the input, except that
all preprocessing directive |lines have been replaced with blank |ines and al
coments with spaces. Witespace within a line is not altered; however, a
space is inserted after the expansions of nost macro calls.

Source file name and |ine nunber information is conveyed by |ines of the
form

LI NENUM FI LENAVE

which are inserted as needed into the mddle of the input (but never within a
string or character constant). Such a line neans that the followng |ine
originated in file FILENAME at |ine LI NENUM

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/output. HTML [10/26/2004 3:25:21 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Index

Index

@emar k | ndex aut o-generated by Heddl ey
| ndex of database 076adec8-0

Docunment s

Assertions

C Preprocessor Qut put

Cascaded Use of Macros

Conbi ni ng _Source Files

Condi tional s

Condi ti onal s and Macros
Duplication of Side Effects

Frexx C Preprocessor

G obal Actions

Header Fil es

How ' #i ncl ude' worKks

| nproperly Nested Constructs

| nheritance and Header Files

| nvoking the C Preprocessor
Keepi ng Del eted Code for Future Reference
Macr o Concat enati on

Macro Stringification

Macr os

Macros with Argunents

M scel | aneous Preprocessing Directives
New i nes in Macro Argunents

Nonst andard Predefi ned Macros
Once-Only Include Files

Pitfalls and Subtleties of Mcros
Pr edefi ned Macr os

Preprocessing Directives
Redefi ni ng Macros
Self-Referential Mcros

Separ at e Expansi on of Macro Argunents
Si npl e Macros

St andard Predefi ned Macros

http://www.contactor.se/~dast/fpl-old/cpp/heddleyautoindex.HTML (1 of 3) [10/26/2004 3:25:22 PM]

Index

Swal | ow ng the Sem col on

Syntax of Conditionals

The #elif D rective

The #else Directive

The #error and #warning D rectives
The #if' Directive

The '#include' Directive
Undefi ni ng Macros

Uni nt ended Grouping of Arithnetic
Uses of Header Files

Wiy Conditionals are Used

But t ons

Ar gunent IMacr os
Assertions
Conbi ni ng Sour ces
Concat enat i on
Condi tional s

Del eti on
Directives

Errors

d obal Acti ons
Header Fil es
Header Uses

| ncl ude Qperation
| ncl ude Synt ax

| ndex

| nheritance

| nvocati on

Macro Pitfalls
Macr os

Macr os

Nonst andard Pr edefi ned
Once-Only

O her Directives
Qut put

Pr edefi ned
Redef i ni ng

http://www.contactor.se/~dast/fpl-old/cpp/heddleyautoindex.HTML (2 of 3) [10/26/2004 3:25:22 PM]

Index

Si npl e Macr os

St andard Predefined
Stringification
Swal | ow Sem col on
Synt ax

Undef i ni ng

USES

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/heddleyautoindex.HTML (3 of 3) [10/26/2004 3:25:22 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Cascaded Use of Macros

Cascaded Use of Macros

Cascaded Use of Macros

A "cascade" of macros is when one macro's body contains a reference to
another macro. This is very common practice. For exanple,

#def i ne BUFSI ZE 1020
#def i ne TABLESI ZE BUFSI ZE

This is not at all the same as defining "TABLESIZE to be 1020'. The
"#define' for “~TABLESIZE' uses exactly the body you specify--in this case,
"BUFSI ZE' - -and does not check to see whether it too is the nane of a nacro.

It's only when you *use* "TABLESIZE that the result of its expansion is
checked for nore macro nanes.

This nakes a difference if you change the definition of "BUFSIZE at sone
point in the source file. "~TABLESIZE , defined as shown, wll always expand
using the definition of BUFSIZE that is currently in effect:

#def i ne BUFSI ZE 1020
#def i ne TABLESI ZE BUFSI ZE
#undef BUFSI ZE

#def i ne BUFSI ZE 37

Now " TABLESI ZE' expands (in two stages) to 37'. (The "#undef' is to prevent
any warni ng about the nontrivial redefinition of ~BUFSIZE .)

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_cascaded.HTML [10/26/2004 3:25:22 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Duplication of Side Effects

Duplication of Side Effects

Duplication of Side Effects

Many C prograns define a macro mn', for "mninmunm', |ike this:

#define mn(X Y) ((X) <(Y) 2 (X : (Y))

When you use this macro with an argunent containing a side effect, as shown
her e,

next = mn (x +y, foo (z2));
It expands as foll ows:
next = ((x +y) < (foo (2)) ? (x +y) : (foo (2)));
where "x + y' has been substituted for "X and foo (z)' for "Y'.

The function "foo' is used only once in the statenent as it appears in the
program but the expression foo (z)' has been substituted twice into the
macro expansion. As a result, "foo' mght be called two times when the
statenent is executed. |If it has side effects or if it takes a long tine to
conpute, the results mght not be what you intended. W say that "min' is an
"unsaf e" nmacro.

The only solution is to be careful when *using* the macro "min'. For
exanpl e, you can calculate the value of "foo (z)', save it in a variable, and
use that variable in mn':

#define mn(X Y) ((X) <(Y) 2 (X : (Y))

int tem= foo (z);
next = mn (x +y, tem;

}

(where we assune t hat

N

foo' returns type ‘int').

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_duplication.HTML [10/26/2004 3:25:23 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Improperly Nested Constructs

Improperly Nested Constructs

| mproperly Nested Constructs

Recal | that when a nacro is called with argunents, the argunents are
substituted into the nmacro body and the result is checked, together with the
rest of the input file, for nore macro calls.

It is possible to piece together a macro call comng partially fromthe
macro body and partially fromthe actual argunents. For exanpl e,

#defi ne doubl e(x) (2*(x))
#define call _with 1(x) x(1)

woul d expand "call _with_1 (double)' into (2*(1))"'.

Macro definitions do not have to have bal anced parentheses. By witing an
unbal anced open parenthesis in a macro body, it is possible to create a macro
call that begins inside the macro body but ends outside of it. For exanple,

#define strange(file) fprintf (file, "% %",
strange(stderr) p, 35)

This bizarre exanpl e expands to fprintf (stderr, "% %", p, 35)'!

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_impropernesting.HTML [10/26/2004 3:25:24 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Newlinesin Macro Arguments

Newlines in Macro Arguments

Newl i nes in Macro Argunents

Traditional macro processing carries forward all newines in nmacro argunents
into the expansion of the macro. This nmeans that, if sone of the argunents are
substituted nore than once, or not at all, or out of order, new ines can be
duplicated, |ost, or noved around within the expansion. If the expansion
consists of nultiple statenents, then the effect is to distort the |ine
nunbers of sone of these statenents. The result can be incorrect line
nunbers, in error nessages or displayed in a debugger.

Here is an exanple illustrating this problem
#define ignore_second arg(a,b,c) a; c

I gnore_second_arg (foo (),
i gnored (),
syntax error);

The syntax error triggered by the tokens "syntax error' results in an error
nessage citing line four, even though the statenment text comes fromline five.

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_newlines.HTML [10/26/2004 3:25:24 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Self-Referential Macros

Sel f-Referenti al Macros

A "self-referential” nmacro is one whose nane appears in its definition. A
speci al feature of ANSI Standard Cis that the self-reference is not
considered a macro call. It is passed into the preprocessor out put
unchanged.

Let's consider an exanpl e:
#define foo (4 + foo)

where "foo' is also a variable in your program

Followi ng the ordinary rules, each reference to foo'" will expand into (4 +
foo)'; then this will be rescanned and will expand into (4 + (4 + foo))'; and
so on until it causes a fatal error (nmenory full) in the preprocessor.

However, the special rule about self-reference cuts this process short after
one step, at (4 + foo)'. Therefore, this macro definition has the possibly
useful effect of causing the programto add 4 to the value of "foo' wherever
"foo' is referred to.

In nost cases, it is a bad idea to take advantage of this feature. A person
readi ng the program who sees that foo' is a variable will not expect that it
is a macro as well. The reader will cone across the identifier foo' in the
program and think its value should be that of the variable foo', whereas in
fact the value is four greater.

The special rule for self-reference applies also to "indirect"
self-reference. This is the case where a nacro X expands to use a nacro "y',
and the expansion of "y' refers to the macro "x'. The resulting reference to
"x' cones indirectly fromthe expansion of "x', so it is a self-reference and
is not further expanded. Thus, after

#define x (4 + vy)
#define y (2 * x)

"x'" would expand into (4 + (2 * x))'. Cear?

" is used el sewhere, not fromthe definition of “x'. Then the
" is not a self-reference because x' is not
' contains a
"is

But suppose 'y
use of "x' in the expansion of "y
"in progress". So it does expand. However, the expansion of " x
reference to "y', and that is an indirect self-reference now because 'y
“in progress”". The result is that "y' expands to (2 * (4 +vy))".

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_recursive.HTML (1 of 2) [10/26/2004 3:25:25 PM]

Self-Referential Macros

It is not clear that this behavior would ever be useful, but it is specified
by the ANSI C standard, so you nmay need to understand it.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_recursive.HTML (2 of 2) [10/26/2004 3:25:25 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Separate Expansion of Macro Arguments

Separate Expansion of Macro Arguments

Separ at e Expansion of Macro Argunents

W have expl ai ned that the expansion of a macro, including the substituted
actual argunents, is scanned over again for nmacro calls to be expanded.

VWhat really happens is nore subtle: first each actual argunment text is
scanned separately for macro calls. Then the results of this are substituted
into the macro body to produce the macro expansi on, and the nmacro expansion is
scanned again for macros to expand.

The result is that the actual argunents are scanned *tw ce* to expand nacro
calls in them

Most of the tinme, this has no effect. If the actual argunent contained any
macro calls, they are expanded during the first scan. The result therefore
contains no macro calls, so the second scan does not change it. If the actual
argunent were substituted as given, with no prescan, the single renaining scan
woul d find the same macro calls and produce the sane results.

You m ght expect the double scan to change the results when a
self-referential macro is used in an actual argunent of another nacro: the
self-referential nmacro woul d be expanded once in the first scan, and a second
time in the second scan. But this is not what happens. The self- references
that do not expand in the first scan are marked so that they will not expand
in the second scan either.

The prescan is not done when an argunent is stringified or concatenated.
Thus,

#define str(s) #s
#define foo 4
str (foo)

expands to ""foo"'. Once nore, prescan has been prevented from havi ng any
noti ceabl e effect.

More precisely, stringification and concatenation use the argunent as
witten, in un-prescanned form The sanme actual argunent woul d be used in
prescanned formif it is substituted el sewhere wthout stringification or
concat enat i on.

#define str(s) #s |ose(s)
#define foo 4
str (foo)

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_separateexp.HTML (1 of 3) [10/26/2004 3:25:26 PM]

Separate Expansion of Macro Arguments

expands to ""foo" lose(4)'.

You m ght now ask, "Why nention the prescan, if it nakes no difference? And
why not skip it and nake the preprocessor faster?" The answer is that the
prescan does nmake a difference in three special cases:

* Nested calls to a macro
* Macros that call other macros that stringify or concatenate.
* Macr os whose expansi ons contain unshi el ded commas.

W say that "nested"” calls to a macro occur when a macro's actual argunent
contains a call to that very macro. For exanple, if "f' is a macro that

expects one argunment, “f (f (1))' is a nested pair of calls to f'. The
desired expansion is nade by expanding 'f (1)' and substituting that into the
definition of "f'. The prescan causes the expected result to happen. W+thout

the prescan, f (1)' itself would be substituted as an actual argunent, and
the inner use of "f' would appear during the nmain scan as an indirect

sel f-reference and woul d not be expanded. Here, the prescan cancels an
undesirabl e side effect (in the nedical, not conputational, sense of the term
of the special rule for self-referential macros.

But prescan causes trouble in certain other cases of nested macro calls.
Here is an exanpl e:

#define foo a,b
#define bar(x) | ose(x)
#define lose(x) (1 + (x))

bar (f 00)
W would like “bar(foo)' to turninto “(1 + (foo))', which would then turn
into (1 + (a,b))'. But instead, "bar(foo)' expands into "lose(a,b)', and you
get an error because "lose' requires a single argunent. In this case, the

problemis easily solved by the sane parentheses that ought to be used to
prevent msnesting of arithmetic operations:

#define foo (a,b)
#define bar(x) lose((x))

The problemis nore serious when the operands of the macro are not
expressions; for exanple, when they are statenents. Then parentheses are
unaccept abl e because they woul d nake for invalid C code:

#define foo { int a, b; ... }

There is al so one case where prescan is useful. It is possible to use
prescan to expand an argunent and then stringify it--if you use two | evels of
macros. Let's add a new macro xstr' to the exanple shown above:

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_separateexp.HTML (2 of 3) [10/26/2004 3:25:26 PM]

Separate Expansion of Macro Arguments

#define xstr(s) str(s)
#define str(s) #s
#define foo 4

xstr (foo)

This expands into ""4"', not "foo"'. The reason for the difference is that
the argunent of “xstr' is expanded at prescan (because "xstr' does not specify
stringification or concatenation of the argunent). The result of prescan then
forms the actual argunment for “str'. “str' uses its argunment w thout prescan
because it perforns stringification; but it cannot prevent or undo the
prescanni ng al ready done by " xstr'.

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_separateexp.HTML (3 of 3) [10/26/2004 3:25:26 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

The #elif Directive

The #elif Directive

The “#elif' Directive

One commbn case of nested conditionals is used to check for nore than two
possi ble alternatives. For exanple, you m ght have

#if X ==

#else [* X 1= 1 */
#if X ==

#else [* X 1= 2 */

#endif /* X 1= 2 */
#endif /* X 1=1 */

Anot her conditional directive, #elif', allows this to be abbrevi ated as
foll ows:

Hif X ==

#elif X ==

#éise [* X 1=2 and X = 1%/
endif /* X 1= 2 and X | = 1%/

“#elif' stands for "else if". Like " #else', it goes in the mddle of a
“#if'-"#endif' pair and subdivides it; it does not require a matching " #endif'
of its own. Like "#if', the #elif' directive includes an expression to be
t est ed.

The text following the "#elif' is processed only if the original
“#if'-condition failed and the "#elif' condition succeeds. Mre than one
“#elif' can go in the same "#if'- #endif' group. Then the text after each
“#elif' is processed only if the #elif' condition succeeds after the original
“#if' and any previous " #elif' directives within it have failed. “#else' is
equivalent to #elif 1', and #else' is allowed after any nunber of “#elif'
directives, but "#elif' may not follow " #else'.

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/cond_syntax_elif. HTML [10/26/2004 3:25:26 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

The #else Directive

The " #else' Directive

The "#else' directive can be added to a conditional to provide alternative
text to be used if the condition is false. This is what it |ooks |ike:

#i f EXPRESSI ON
TEXT- | F- TRUE

#el se /* Not EXPRESSI ON */
TEXT- | F- FALSE

#endi f /* Not EXPRESSI ON */

| f EXPRESSION i s nonzero, and thus the TEXT-IF-TRUE is active, then " #el se
acts |like a failing conditional and the TEXT-1F-FALSE is ignored.
Contrariwise, if the #if' conditional fails, the TEXT-I1F-FALSE is consi dered
i ncl uded.

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/cond_syntax_else.HTML [10/26/2004 3:25:26 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

The #if' Directive

The #if' Directive

The "#if' Directive

The “#if' directive in its sinplest form consists of

#i f EXPRESSI ON
CONTROLLED TEXT
#endi f /* EXPRESSI ON */

The conment following the #endif' is not required, but it is a good
practice because it hel ps people match the "#endif' to the correspondi ng

“#if'. Such comments shoul d al ways be used, except in short conditionals that
are not nested. In fact, you can put anything at all after the #endif' and
it will be ignored by the GNU C preprocessor, but only comments are acceptabl e

in ANSI Standard C.

EXPRESSION is a C expression of integer type, subject to stringent
restrictions. It may contain

* I nteger constants, which are all regarded as "|long' or " unsigned
| ong' .

* Character constants, which are interpreted according to the
character set and conventions of the machi ne and operating system
on which the preprocessor is running.

* Arithnmetic operators for addition, subtraction, nultiplication,
di vi sion, bitw se operations, shifts, conparisons, and | ogi cal
operations (& and "||").

* |dentifiers that are not nacros, which are all treated as zero(!).

* Macro calls. Al macro calls in the expression are expanded before
actual conputation of the expression's val ue begins.

Note that "sizeof' operators and enum -type val ues are not all owed
according to ANSI, but the Frexx C preprocessor allows the use of sizeof() and
even enabl es the user to set the sizeof size fromthe command I|ine.

“enum -type values, like all other identifiers that are not taken as nmacro
call s and expanded, are treated as zero.

The CONTROLLED TEXT inside of a conditional can include preprocessing
directives. Then the directives inside the conditional are obeyed only if that
branch of the conditional succeeds. The text can al so contain other
condi ti onal groups. However, the #if' and "#endif' directives nust bal ance.

http://www.contactor.se/~dast/fpl-old/cpp/cond_syntax_if. HTML (1 of 2) [10/26/2004 3:25:27 PM]

The #if' Directive

HTML Conversion by AG2HTML.pl VV2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/cond_syntax_if. HTML (2 of 2) [10/26/2004 3:25:27 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

Unintended Grouping of Arithmetic

Unintended Grouping of Arithmetic

Uni nt ended G oupi ng of Arithnetic

You may have noticed that in nost of the macro definition exanples shown
above, each occurrence of a macro argunent nanme had parentheses around it. |In
addi tion, another pair of parentheses usually surround the entire macro
definition. Here is why it is best to wite macros that way.

Suppose you define a macro as foll ows,
#define ceil _div(x, y) (x +y - 1) /vy

whose purpose is to divide, rounding up. (One use for this operation is to
conmpute how nmany "int' objects are needed to hold a certain nunber of "“char’
objects.) Then suppose it is used as follows:

a =ceil _div (b &c, sizeof (int));
Thi s expands into
a = (b &c + sizeof (int) - 1) / sizeof (int);

whi ch does not do what is intended. The operator-precedence rules of C nake
it equivalent to this:

a=(b & (c + sizeof (int) - 1)) / sizeof (int);
But what we want is this:

a =((b &c) + sizeof (int) - 1)) / sizeof (int);
Defining the macro as

#define ceil _div(x, y) ((x) + (y) - 1) / (y)
provi des the desired result.

However, uni ntended grouping can result in another way. Consider " sizeof
ceil _div(1l, 2)'. That has the appearance of a C expression that woul d conpute
the size of the type of “ceil div (1, 2)', but in fact it nmeans sonething very
different. Here is what it expands to:

sizeof ((1) + (2) - 1) /I (2

This woul d take the size of an integer and divide it by two. The precedence
rul es have put the division outside the "sizeof' when it was intended to be
i nsi de.

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_unintendedgroup.HTML (1 of 2) [10/26/2004 3:25:27 PM]

Unintended Grouping of Arithmetic

Par ent heses around the entire macro definition can prevent such probl ens.
Here, then, is the recommended way to define "ceil _div':

#define ceil _div(x, y) (((x) +(y) - 1)/ (y))

HTML Conversion by AG2HTML.pl V2.951201, perl 5.003 & witbrock@cs.cmu.edu

http://www.contactor.se/~dast/fpl-old/cpp/macros_pitfalls_unintendedgroup.HTML (2 of 2) [10/26/2004 3:25:27 PM]

http://www.cs.cmu.edu/~mjw/Amiga/Perl/AG2HTML.pl
http://www.cs.cmu.edu/~mjw/

	www.contactor.se
	Frexx C Preprocessor
	Global Actions
	Preprocessing Directives
	Simple Macros
	Macros
	Macros with Arguments
	Predefined Macros
	Standard Predefined Macros
	Combining Source Files
	Nonstandard Predefined Macros
	Macro Stringification
	Swallowing the Semicolon
	Macro Concatenation
	Undefining Macros
	Redefining Macros
	Pitfalls and Subtleties of Macros
	Header Files
	Uses of Header Files
	The '#include' Directive
	Invoking the C Preprocessor
	How '#include' works
	Once-Only Include Files
	Inheritance and Header Files
	Conditionals
	Why Conditionals are Used
	Syntax of Conditionals
	Keeping Deleted Code for Future Reference
	Conditionals and Macros
	Assertions
	The #error and #warning Directives
	Miscellaneous Preprocessing Directives
	C Preprocessor Output
	Index
	Cascaded Use of Macros
	Duplication of Side Effects
	Improperly Nested Constructs
	Newlines in Macro Arguments
	Self-Referential Macros
	Separate Expansion of Macro Arguments
	The #elif Directive
	The #else Directive
	The #if' Directive
	Unintended Grouping of Arithmetic

