
Graphite Overview, Page 1 of 3 
Sharon Correll, 03-Oct-2011 

Graphite Overview 

Sharon Correll 

Version 3 

1 Overview 
The Graphite engine provides "smart" rendering for complex writing systems. It allows for the 
following complex behaviors: 
 contextual substitution, insertion, and deletion 
 reordering 
 creation of ligatures with defined components 
 positioning based on attachment points or shifting and kerning 
 accessing of glyph metrics 
 rule-based line-breaking 
 application of the Unicode bidirectional algorithm. 
 selecting and editing in all of the above situations. 

2 Project history 
Graphite was originally developed under the code name “WinRend” because it was intended to 
provide complex rendering on the Windows system. Early documents refer to WinRend and also 
to RDL which is now known as GDL (Graphite Description Language). Design work began 
around 1997, requirements were formalized in the first half of 1998, and coding began in the 
middle of 1998. An alpha was made available for testing in mid-2000. A beta of WorldPad, the 
first Graphite-enabled application, was released in September, 2001. Open-sourcing efforts began 
in earnest in the second half of 2002, with a port to Linux starting in late 2002. Version 2 of the 
API was finalized in mid-2005. 

A thorough rewrite of the Graphite engine, called “Graphite2” was completed in 2010. It contains 
a completely new API, but can render using the same font tables as the original Graphite engine. 
This documentation pertains only to the original engine. 

3 Graphite’s application interactions 
From the point of view of the calling application, there are two main classes that serve as the top-
level interface. The Font class represents a font object, which incorporates the font face, boldness, 
and italicization. Various platforms and environments provide different versions of Font, 
depending on how they want to read tables out of the font file. The Segment class represents a 
range of text laid out for rendering, with properly positioned glyphs. The Font is passed as an 
argument to the method that creates Segments (the constructor). Normally a Segment would 
consist of one line of text, or if there are changes in font, writing system, or style, several 
Segments may be needed to make up one line. In no case does a Segment ever consist of text 
displayed on more than one line. The calling application is responsible for laying out the 
segments into a reasonable paragraph. 

In addition to Font and Segment, a TextSource must be provided by the application to supply key 
information; it serves as a “call-back” class. An instance of TextSource represents the text to be 



Graphite Overview, Page 2 of 3 
Sharon Correll, 03-Oct-2011 

rendered—the range of characters and their associated style information. A rudimentary version 
of TextSource is included in the open-source code, but many applications will need to supply 
their own. 

Another call-back class is optional, needed only in the case where justification is required. The 
GrJustifier class is implemented by the application and used by the Graphite engine to make 
decisions about stretching and shrinking to achieve justification. A default GrJustifier class is 
supplied as part of the open-source code. 

The SegmentPainter class used to handle drawing and other operations that occur as part of the 
editing process. An application may make use of the default SegmentPainter class, may subclass 
methods to customize the behavior, or may implement drawing and selection behaviors directly 
without using a SegmentPainter at all. 

4 Graphite fonts 
The behavior of the Graphite engine for a given writing system is specified by special-purpose 
tables in a TrueType font. The application creates a Font object based on this TrueType font, and 
as this object is passed to the Graphite engine, the tables in the font are used to perform the layout 
of glyphs. 

5 Graphite processing 
Processing in Graphite occurs in a series of passes. The first pass converts Unicode characters 
from the underlying string to glyph IDs; all the remainder of the processing happens in terms of 
glyph IDs. Each pass takes the output of the previous pass as its own input, looks for patterns, and 
applies rules to make modifications to the stream of glyphs. The final pass performs the final 
positioning of all glyphs. The output of the engine is a “segment,” a group of well-positioned 
glyphs that fits properly in the available space, and also understands its relationship to the original 
underlying string. 

A class called GrTableManager is an important helper class to the engine. It keeps a list of passes 
and manages the process of calling each pass. An important point to be aware of is that 
processing occurs in small chunks. We don’t run the whole string through the first pass, then run 
all of the result through the second pass, etc. Instead, we process just little bit of the first pass, and 
send the results on the second pass, which does its processing and sends the results to the third 
pass, and so on. The mechanism is driven by the final pass attempting to do its positioning, and 
repeatedly requesting a little more input from the previous passes until it has filled up the 
available space or successfully processed all the input. 

The reason for using this approach is to allow us to avoid doing more work than necessary in the 
case where we have a long string that will not fit on the line, and we need to insert a line-break. 
We gradually process a little bit of each pass until the final pass notices that the available space 
has been exceeded, and then it initiates a prcoess called “backtracking.” Backtracking involves 
finding a place to insert a linebreak, and then "unwinding" the subsequent glyph streams so that 
we can redo the processing while taking into account the inserted line-break. The trick is to 
unwind as little as possible but enough that we retain the context for each pass. This requires 
careful bookkeeping, and is managed by keeping track of “chunks.” (It may also be necessary to 
backtrack more than once before finding a line-break that will allow the segment to fit on the 
line.) See ‘WR Data Transform Engine.pdf’ (an early design document) for more details on this 
process. 



Graphite Overview, Page 3 of 3 
Sharon Correll, 03-Oct-2011 

5.1 Passes and streams 

There are five kinds of passes: the glyph-generation pass, line-break passes, substitution passes, 
the bidi pass, and positioning passes—implemented by corresponding subclasses of GrPass. They 
occur in the order just listed. The first pass is the glyph-generation pass, and simply creates a 
stream of glyphs corresponding to characters. Substitution passes have the ability to substitute, 
insert, delete, and reorder glyphs; positioning and line-break passes do not. The bidi pass (if any) 
performs the Unicode bidi algorithm. (Many Graphite fonts will not have a bidi pass or any line-
break passes.) 

Each pass takes a stream of glyphs as input and generates a stream as output. That output stream 
then serves as input to the following pass. The first pass, which is always the glyph generation 
pass, is numbered 0 and generates stream #0. Stream #0 serves as input to pass #1 which outputs 
stream #1, etc. 

The streams are implemented by instances of class GrSlotStream, containing the glyphs as they 
are being processed. Each stream holds a sequence of GrSlotStates, where each slot contains one 
glyph. The slots have pointers to slots in the previous streams to help keep track of the 
relationships between the output and the input. They also have a number of instance variables that 
represent "slot attributes" that are modified by the rules. 

5.2 Matching and running rules 

Pattern matching—determining which rules to fire—is achieved using finite state machines 
(FSMs). Each pass has its own finite state machine. The columns in the FSM correspond to 
classes of glyphs that are considered equivalent for the purposes of matching, and the rows are 
the states to transition to. Each FSM has a table assigning each glyph ID to a column in the table, 
and each final state indicates which rules are considered to be matched. See ‘WR FSM 
Design.pdf’ for more details. 

The effect of firing of the rules is done though a stack machine mechanism. There are commands 
to perform subsitutions, look up glyph attributes, make mathematical calculations, etc. See ‘Stack 
Machine Commands.doc’ for a complete list. 

5.3 Other details 

Another tricky aspect of the engine relates to cross-line-boundary contextualization. In other 
words, the way a segment is rendered may be affected by the characters on the previous or 
following line. In order to make this happen, there is a block of information that is passed in when 
starting to create a new segment, which is information from the previous segment. It tells the 
engine how much to "back up" in order to take into account the stuff from the previous segment 
that will have an effect. ‘WR Data Transform Engine.pdf’ also discusses this process. 

To get a complete overview of the capabilities of the Graphite system, refer to ‘GDL.pdf’. 

6 Revision History 
1. 15-May-2003: based on an earlier plain-text document. 
2. 25-April-2006: updated to discuss API v2. 
3. 3-Oct-2011: mention Graphite2 

7 File Name 
GraphiteOverview.rtf 


