1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|
/*********************************************************
Shapes the vector containing all initial values into
the needed vectors and matrices for the log-likelihood
*********************************************************/
function scalar HIP_params_shape(matrix *theta, matrix *beta,
matrix *alpha, matrix *Pi,
matrix *psi, matrix *C,
scalar k1, scalar k2,
scalar p, scalar q)
scalar h = k1 + p + q
matrix beta = theta[1: k1+p]
if q > 0
matrix alpha = theta[k1+p+1:h]
endif
if (p!=0)
scalar k = k1+k2
Pi = mshape(theta[h+1 : h+p*k],k,p)
matrix psi = theta[h+p*k+1:h + p*(k+1),]
matrix C = lower(unvech(theta[h+p*(k+1)+1:,]))
else
Pi = {}
psi = {}
C = {}
endif
return 0
end function
function matrix EndoVarNormalize(matrix E)
matrix s = diag(mcov(E))
scalar h = 0.5
s = s .^ h
return s
end function
function matrix ExoVarNormalize(matrix X)
# we exclude from the treatment the constant
# and the dummy variables
k = cols(X)
s = ones(k,1)
matrix chk = minc((X .= 0) + (X .= 1))
matrix s = chk + (1-chk) .* sdc(X)
return s'
end function
function scalar CraggDonald(matrix Sigma, matrix Y, matrix X,
matrix Z)
p = cols(Y)
matrix U = {}
mols(Z, X, &U)
B = mols(Y, U)
matrix l = eigsolve((Y'U) * B, Sigma)
return minc(l)/cols(Z)
end function
function matrix InitProbit(series y, list W, scalar *err)
scalar k = nelem(W)
catch probit y W --quiet # here we can run into the perfect-prediction problem
err = $error
if err == 0
list DROPPED = W - $xlist
# handle some failures
if nelem(DROPPED) >0
printf "The variable(s) %s were dropped\n", varname(DROPPED)
printf "Initializing to zeros and hoping for the best.\n"
matrix beta = zeros(k,1)
else
matrix beta = $coeff
endif
ret = $lnl | beta
else
printf "Warning: probit returned error %d (%s)\n", err, errmsg(err)
printf "This is weird and disturbing.\n"
ret = {NA} | zeros(k,1)
endif
return ret
end function
/*********************************************************
Two-step estimation to compute initial
values. Parameters estimated covariance matrix is not
computed.
*********************************************************/
function matrix InitParm(bundle *b)
matrix HETVAR = b["mHETVAR"]
matrix ENDOG = b["mENDOG"]
matrix Z = b["mZ"] # total regressors
matrix X = b["mX"] # total instruments
series y = b["depvar"]
scalar k1 = b["mk1"]
scalar k = b["mk"]
scalar p = b["mp"]
scalar q = b["mq"]
scalar h = b["mh"]
scalar het = b["het"]
scalar iv = b["iv"]
list W
loop i=1..h -q
series z$i = Z[,$i]
W += z$i
endloop
RESCALEX = 0 # Experimental; not for now
if RESCALEX
matrix rescale = ExoVarNormalize(X[,1:k1])
b["rescaleX"] = rescale
X[,1:k1] = X[,1:k1] ./ rescale'
b["mX"] = X
b["mEXOG"] = b["mEXOG"] ./ rescale'
else
matrix rescale = ones(k1,1)
b["rescaleX"] = rescale
endif
matrix E = { }
matrix V_Pi = { }
if iv
matrix Pi = mols(ENDOG, X, &E, &V_Pi)
matrix Sigma = mcov(E)
lambda = CraggDonald(Sigma, ENDOG, b["mEXOG"], b["mADDIN"])
b["CraggDonald"] = lambda
if lambda < 1.0e-2
printf "Weak instruments (lambda = %g); expect trouble.\n", lambda
endif
matrix rescale = EndoVarNormalize(E)
b["rescaleY"] = rescale
if rows(rescale) > 0
ENDOG = ENDOG ./ rescale'
b["mENDOG"] = ENDOG
Pi = Pi ./ rescale'
E = E ./ rescale'
Sigma = Sigma ./ (rescale .* rescale')
endif
b["uhat"] = E
loop i=1..p -q
series e$i = E[,$i]
W += e$i
endloop
matrix C = cholesky(invpd(Sigma))
else
matrix Pi = {}
matrix psi = {}
matrix C = {}
endif
scalar err = 0
##BUG: cambiato il nome da beta a inipar
# (conflitto con il vecchio script)
matrix inipar = InitProbit(y, W, &err)
if err > 0
print "Initial probit failed (%s). Aborting.", errmsg(error)
beta = {}
scalar b["lnl0"] = NA
return beta
else
scalar b["lnl0"] = inipar[1]
matrix beta = inipar[2:h+1]
endif
if het
series ndx = Z * beta
series mills = y ? invmills(-ndx) : -invmills(ndx)
series s2 = -ndx*mills
alpha = mols(s2 , 1 ~ HETVAR)
alpha = alpha[2:]
else
alpha = {}
endif
if iv
##BUG
#gamma = $coeff[h+1: ]
matrix gamma = inipar[h+2:]
scalar scale = sqrt(1 + qform(gamma', Sigma))
matrix beta = beta ./ scale
matrix psi = inv(C')*gamma ./ scale
endif
theta = beta | alpha | vec(Pi) | psi | vech(C)
return theta
end function
function scalar rescale_results(bundle *mod, matrix *theta, matrix *vcv,
matrix *G)
# used to undo the scaling of the endogenous variables once estimation
# is done; while we're at it, we also compute the Jacobian term to correct
# the loglikelihood by
matrix sY = mod["rescaleY"]
matrix sX = mod["rescaleX"]
matrix isY = 1 ./ sY
matrix isX = 1 ./ sX
scalar p = rows(sY)
scalar k1 = mod["mk1"]
scalar k2 = mod["mk2"]
if mod["het"]
s_a = ones(mod["mq"],1)
else
s_a = {}
endif
if mod["iv"]
a_Pi = vec( (isX .* sY') | mshape(sY, p, k2)' )
a_end = ones(p,1) | vech(mshape(isY,p,p)')
else
a_Pi = {}
a_end = {}
endif
matrix a = isX | isY | s_a | a_Pi | a_end
theta = theta .* a
vcv = vcv .* (a .* a')
G = G ./ a'
# mod["mENDOG"] = mod["mENDOG"] .* sY'
return sumc(ln(sY))
end function
/******************************
Log-likelihood
****************************/
function series loglik_m(matrix *Y, matrix *X, matrix *Pi, matrix *C,
matrix *ScaledRes)
# computes the marginal loglikelihood: the argument ScaledRes will
# hold in output the re-scaled residuals (used in the conditional
# loglik)
matrix ScaledRes = (Y - X*Pi) * C
scalar J = sumc(ln(diag(C))) - cols(Y)*.91893853320467274178
return J - 0.5*sumr(ScaledRes .^2)
end function
function scalar HIP_loglik(series y, matrix *EXOG, matrix *ENDOG[null],
matrix *ADDIN[null], matrix *HETVAR[null],
matrix *beta, matrix *alpha[null],
matrix *Pi[null], matrix *psi[null],
matrix *C[null], series *ll, matrix *omega,
series *sigma)
# computes the total loglikelihood: the arguments omega and sigma will
# hold in output the re-scaled residual and the conditional variance
# to avoid re-computing them later (eg for the score matrix); note that
# sigma holds the conditional standard error (NOT the variance)
scalar het = (rows(alpha) > 0)
scalar iv = (rows(Pi) > 0)
series ll = NA
scalar err = 0
# do checks first
if iv
scalar cVar = 1-psi'psi
scalar pdCheck = (minc(diag(C)) > 1.0e-8) && \
(cVar > 1.0e-20)
err = pdCheck ? 0 : 1
endif
if het && !err
series ndxv = HETVAR * alpha
scalar cvCheck = (max(ndxv) < 100)
err = cvCheck ? 0 : 2
endif
if err
return err
endif
# ok, we should be within 'nice' bounds by now
if iv # compute marginal loglikelihood
matrix X = EXOG ~ ADDIN
matrix omega = {}
series llm = loglik_m(&ENDOG, &X, &Pi, &C, &omega)
if sum(missing(llm)) > 0
err = 3
printf "Problems with marginal loglik!\n"
return err
endif
endif
# now compute conditional loglikelihood
# compute 'plain' nu first
series nu = (EXOG ~ ENDOG) * beta
# next, adjust as needed
if het
series sigma = exp(ndxv)
series nu = nu / sigma
else
series sigma = 1
endif
if iv
series nu = (nu + (omega * psi)) / sqrt(cVar)
endif
# form loglikelihood and add marginal if needed
series ndx = y ? nu : -nu
check = min(ndx)
if check < -35.0
err = 4
# printf "Problems with conditional loglik! min(ndx = %g)\n", check
series ll = NA
else
series ll = ln(cnorm(ndx))
endif
if !err && iv
ll += llm
endif
#done
return err
end function
function matrix wkron(matrix *X, matrix *Z)
k = cols(X)
ret = {}
if ($version < 10908)
loop i=1..k --quiet
matrix ret ~= X[,i] .* Z
endloop
else
ret = hdprod(X,Z)
endif
return ret
end function
/******************************
Score matrix by observation
****************************/
function matrix HIP_Score(series y, matrix *EXOG, matrix *ENDOG[null],
matrix *ADDIN[null], matrix *HETVAR[null],
matrix *beta, matrix *alpha[null],
matrix *Pi[null], matrix *psi[null],
matrix *C[null], matrix *omega, series *sigma)
scalar het = (rows(alpha) > 0)
scalar p = cols(ENDOG)
scalar iv = (p > 0)
matrix Z = EXOG ~ ENDOG
# build nu first
series ndxm = Z * beta
if het
series ndxm = ndxm/sigma
endif
if iv
scalar sigmacond = sqrt(1 - psi'psi)
series nu = (ndxm + (omega * psi)) / sigmacond
else
scalar sigmacond = 1
series nu = ndxm
endif
# the mills ratio
series mills = y ? invmills(-nu) : -invmills(nu)
# now the derivatives wrt nu
series s_beta = mills/(sigmacond * sigma)
matrix S_beta = s_beta .* Z
if het
series s_alpha = -(ndxm*mills)/sigmacond
matrix S_alpha = {s_alpha} .* HETVAR
else
matrix S_alpha = { }
endif
if iv
matrix scaledpsi = psi ./ sigmacond
matrix s_Pi = omega - (mills .* scaledpsi')
matrix tmp = s_Pi * C'
matrix X = EXOG ~ ADDIN
matrix S_Pi = wkron(&tmp,&X)
matrix S_psi = omega + nu .* scaledpsi'
matrix S_psi = (mills/sigmacond) .* S_psi
matrix tmp = zeros(p,p)
tmp[diag] = 1 ./ diag(C)
tmp = vech(tmp)'
sel = vech(mshape(seq(1,p*p),p,p)')
matrix omiC = omega*inv(C)
matrix S_dc = wkron(&s_Pi,&omiC)
matrix S_dc = tmp .- S_dc[,sel]
else
matrix S_psi = { }
matrix S_dc = { }
matrix S_Pi = { }
endif
ret = (S_beta ~ S_alpha ~ S_Pi ~ S_psi ~ S_dc)
return ret
end function
function matrix Wald_test(bundle *b, scalar ini, scalar df)
# it is assumed that the model has already been estimated
# and that the coefficients and the vcv matrix exist
scalar fin = ini + df - 1
theta = b["theta"]
vtheta = b["VCVtheta"]
vtheta = vtheta[ini:fin, ini:fin]
matrix WT = qform(theta[ini:fin]', invpd(vtheta))
return (WT ~ df ~ pvalue(X, df, WT[1]))
end function
function matrix LM_test(bundle *b)
theta = b["theta"]
k1 = b["mk1"]
k2 = b["mk2"]
k = b["mk"]
p = b["mp"]
q = b["mq"]
scalar het = (q>0)
scalar g = k1 + p + q
alpha = theta[1:k1]
delta = theta[k1+1:k1+p]
if het
gamma = theta[k1+p+1:g]
endif
Pi = mshape(theta[g+1 : g+p*k],k,p)
P1 = Pi[1:k1,]
P2 = Pi[k1+1:k,]
psi = (alpha + P1*delta) | (P2*delta) | delta
X = b["mX"]
W = b["mHETVAR"]
V = b["uhat"]
y = b["depvar"]
if het
series ex = exp(-W*gamma)
series ndx = {ex} .* ((X ~ V) * psi)
else
series ndx = (X ~ V) * psi
endif
series mills = y ? invmills(-ndx) : -invmills(ndx)
if het
matrix S_psi = (mills * ex) .* (X ~ V)
matrix S_gamma = - mills*ndx .* W
else
matrix S_psi = mills .* (X ~ V)
matrix S_gamma = { }
endif
matrix G = S_psi ~ S_gamma
scalar LM = qform(sumc(G),invpd(G'G))
df = k2 - p
return (LM ~ df ~ pvalue(X,df,LM))
end function
function matrix LR_test(bundle *b, scalar df)
LR = 2*(b["lnl1"] - b["lnl0"])
return (LR ~ df ~ pvalue(X,df,LR))
end function
function matrix CI_test(bundle *b)
scalar het = b["het"]
theta = b["theta"]
Z = b["mZ"]
h = b["mh"]
q = b["mq"]
W = b["mHETVAR"]
beta = theta[1:h]
series ndxm = Z * beta
if het
alpha = theta[h+1:h+q]
series ndxv = W * alpha
else
series ndxv = 0
endif
y = b["depvar"]
series mills = y ? invmills(-ndxm) : -invmills(ndxm)
matrix e3 = exp(3*ndxv)*mills*(2 + ndxm*ndxm)
matrix e4 = -exp(4*ndxv)*mills*ndxm*(3 + ndxm*ndxm)
G = b["SCORE"]
G = G[,1:h+q] ~ e3 ~ e4
scalar T = qform(sumc(G),invpd(G'G))
return (T ~ 2 ~ pvalue(X,2,T))
end function
function void HIP_diagnostics(bundle *b)
k1 = b["mk1"]
p = b["mp"]
h = b["mh"]
q = b["mq"]
k = b["mk"]
het = b["het"]
iv = b["iv"]
# Overall test (Wald)
scalar df = k1 + p - 1
scalar ini = 2
WT = Wald_test(&b, ini, df)
b["WaldAll"] = WT
if iv
# Endogeneity test (Wald)
scalar df = p
scalar ini = h + q + k*p + 1
WT = Wald_test(&b, ini, df)
b["WaldEnd"] = WT
if (k>h) # Test of overidentifying restrictions (LM)
LM = LM_test(&b)
b["LMOverid"] = LM
endif
else
# Chesher&Irish CM test for normality (unsuitable
# for IV but ok if HET)
CI = CI_test(&b)
b["normtest"] = CI
endif
# Heteroskedasticity test: Wald if iv, else LR
if het
if iv
scalar ini = h + 1
T = Wald_test(&b, ini, q)
else
T = LR_test(&b, q)
endif
b["HETtest"] = T
endif
end function
|