1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
/*
* gretl -- Gnu Regression, Econometrics and Time-series Library
* Copyright (C) 2001 Allin Cottrell and Riccardo "Jack" Lucchetti
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "libgretl.h"
#include "version.h"
#include <glib.h>
/* provides for one-way and two-way ANOVA */
struct anova {
int n; /* observations used */
int nt; /* number of treatment 'levels' */
int nb; /* number of 'blocks' (if applicable) */
double SST; /* total sum of squares */
double SSTr; /* treatment sum of squares */
double SSB; /* 'block' sum of squares (if applicable) */
double SSE; /* error sum of squares */
double F; /* F-test */
double pval; /* p-value for F-test */
double *cmeans; /* column means */
double *rmeans; /* row means */
int *ccount; /* column counts */
int *rcount; /* row counts */
double *tvec; /* workspace follows */
double *bvec;
gretl_matrix *tvals;
gretl_matrix *bvals;
};
static void anova_init (struct anova *v)
{
v->n = v->nt = v->nb = 0;
v->SST = v->SSTr = v->SSB = v->SSE = 0.0;
v->F = v->pval = NADBL;
v->cmeans = v->rmeans = NULL;
v->ccount = v->rcount = NULL;
v->tvec = v->bvec = NULL;
v->tvals = v->bvals = NULL;
}
static void anova_free (struct anova *v)
{
free(v->cmeans);
free(v->rmeans);
free(v->ccount);
free(v->rcount);
free(v->tvec);
free(v->bvec);
gretl_matrix_free(v->tvals);
gretl_matrix_free(v->bvals);
}
static int print_anova (struct anova *v, PRN *prn)
{
int dftotal, dftreat, dfblock, dferr;
double mst, msr, mse;
int n, c1, c2, c3;
dftotal = v->n - 1;
dftreat = v->nt - 1;
dfblock = (v->nb > 0)? v->nb - 1 : 0;
dferr = dftotal - dftreat - dfblock;
pputs(prn, "\n\n");
c1 = g_utf8_strlen(_("Sum of squares"), -1);
c2 = g_utf8_strlen(_("df"), -1);
c3 = g_utf8_strlen(_("Mean square"), -1);
c1 = (c1 < 35)? 35 : c1;
c2 = (c2 > 8)? c2 + 1 : (c2 < 8)? 8 : c2;
c3 = (c3 > 16)? c3 + 1 : (c3 < 16)? 16 : c3;
/* header strings are right-aligned */
n = g_utf8_strlen(_("Sum of squares"), -1);
bufspace(c1 - n, prn);
pputs(prn, _("Sum of squares"));
n = g_utf8_strlen(_("df"), -1);
bufspace(c2 + 1 - n, prn);
pputs(prn, _("df"));
n = g_utf8_strlen(_("Mean square"), -1);
bufspace(c3 + 1 - n, prn);
pputs(prn, _("Mean square"));
pputs(prn, "\n\n");
c1 = 16;
/* Mean Square, treatment */
msr = v->SSTr / dftreat;
/* string left-aligned with initial offset of 2 */
n = g_utf8_strlen(_("Treatment"), -1);
bufspace(2, prn);
pputs(prn, _("Treatment"));
bufspace(16 - n, prn);
pprintf(prn, " %*g %*d %*g\n", c1, v->SSTr, c2, dftreat, c3, msr);
if (dfblock > 0) {
/* Mean Square, block */
double msb = v->SSB / dfblock;
/* string left-aligned with initial offset of 2 */
n = g_utf8_strlen(_("Block"), -1);
bufspace(2, prn);
pputs(prn, _("Block"));
bufspace(16 - n, prn);
pprintf(prn, " %*g %*d %*g\n", c1, v->SSB, c2, dfblock, c3, msb);
}
/* Mean Square, errors */
mse = v->SSE / dferr;
/* string left-aligned with initial offset of 2 */
n = g_utf8_strlen(_("Residual"), -1);
bufspace(2, prn);
pputs(prn, _("Residual"));
bufspace(16 - n, prn);
pprintf(prn, " %*g %*d %*g\n", c1, v->SSE, c2, dferr, c3, mse);
/* Mean Square, total */
mst = v->SST / dftotal;
/* string left-aligned with initial offset of 2 */
n = g_utf8_strlen(_("Total"), -1);
bufspace(2, prn);
pputs(prn, _("Total"));
bufspace(16 - n, prn);
pprintf(prn, " %*g %*d %*g\n", c1, v->SST, c2, dftotal, c3, mst);
pputc(prn, '\n');
if (na(v->F)) {
pprintf(prn, " F(%d, %d) = %g / %g (%s)\n\n", dftreat, dferr,
msr, mse, _("undefined"));
} else {
pprintf(prn, " F(%d, %d) = %g / %g = %g ",
dftreat, dferr, msr, mse, v->F);
if (v->pval < .0001) {
pprintf(prn, "[%s %.3g]\n\n", _("p-value"), v->pval);
} else if (!na(v->pval)) {
pprintf(prn, "[%s %.4f]\n\n", _("p-value"), v->pval);
}
}
return 0;
}
/* one-way anova only: print the mean and standard deviation
of the response at each level of treatment */
static int anova_print_means (struct anova *v, const double *xt,
const double *y, double ybar,
int t1, int t2, PRN *prn)
{
double d, *csd = malloc(v->nt * sizeof *csd);
int c1, c2, c3, c4;
int i, t;
if (csd == NULL) {
return E_ALLOC;
}
for (i=0; i<v->nt; i++) {
csd[i] = 0.0;
}
for (t=t1; t<=t2; t++) {
if (!na(xt[t]) && !na(y[t])) {
for (i=0; i<v->nt; i++) {
if (xt[t] == v->tvals->val[i]) {
d = y[t] - v->cmeans[i];
csd[i] += d * d;
break;
}
}
}
}
c1 = g_utf8_strlen(_("Level"), -1);
c2 = g_utf8_strlen(_("n"), -1);
c3 = g_utf8_strlen(_("mean"), -1);
c4 = g_utf8_strlen(_("std. dev"), -1);
c1 = (c1 < 8)? 8 : c1;
c2 = (c2 > 6)? c2 + 1 : (c2 < 6)? 6 : c2;
c3 = (c3 > 10)? c3 + 1 : (c3 < 10)? 10 : c3;
c4 = (c4 > 12)? c4 + 1 : (c4 < 12)? 12 : c4;
pprintf(prn, " %-*s %*s %*s %*s\n\n", c1, _("Level"), c2, _("n"),
c3, _("mean"), c4, _("std. dev"));
for (i=0; i<v->nt; i++) {
if (v->ccount[i] > 1) {
csd[i] /= v->ccount[i] - 1;
csd[i] = sqrt(csd[i]);
pprintf(prn, " %-*g %*d %*g %#*.5g\n", c1, v->tvals->val[i],
c2, v->ccount[i], c3, v->cmeans[i], c4, csd[i]);
} else {
pprintf(prn, " %-*g %*d %*g %*s\n", c1, v->tvals->val[i],
c2, v->ccount[i], c3, v->cmeans[i], c4, "NA");
}
}
pprintf(prn, "\n %s = %g\n\n", _("Grand mean"), ybar);
free(csd);
return 0;
}
/* allocate arrays to hold the valid, in-sample values of the
treatment and block variables */
static int anova_make_arrays (const double *xb, struct anova *v)
{
int err = 0;
v->tvec = malloc(v->n * sizeof *v->tvec);
if (v->tvec == NULL) {
err = E_ALLOC;
} else if (xb != NULL) {
v->bvec = malloc(v->n * sizeof *v->bvec);
if (v->bvec == NULL) {
free(v->tvec);
v->tvec = NULL;
err = E_ALLOC;
}
}
return err;
}
/* construct vectors holding the distinct values of the
treatment and block variables */
static int anova_make_value_vecs (struct anova *v)
{
int err = 0;
v->tvals = gretl_matrix_values(v->tvec, v->n, OPT_S, &err);
if (!err && v->tvals->rows < 2) {
gretl_errmsg_set("Insufficient observations");
err = E_DATA;
}
if (!err && v->bvec != NULL) {
v->bvals = gretl_matrix_values(v->bvec, v->n, OPT_S, &err);
if (!err && v->bvals->rows < 2) {
gretl_errmsg_set("Insufficient observations");
err = E_DATA;
}
}
if (!err) {
v->nt = v->tvals->rows;
if (v->bvals != NULL) {
v->nb = v->bvals->rows;
}
}
return err;
}
/* allocate and initialize arrays to calculate the column
and row means of the ANOVA table */
static int anova_accounting_arrays (struct anova *v)
{
int i;
v->cmeans = malloc(v->nt * sizeof *v->cmeans);
v->ccount = malloc(v->nt * sizeof *v->ccount);
if (v->cmeans == NULL || v->ccount == NULL) {
return E_ALLOC;
}
for (i=0; i<v->nt; i++) {
v->cmeans[i] = 0.0;
v->ccount[i] = 0;
}
if (v->nb > 0) {
v->rmeans = malloc(v->nb * sizeof *v->rmeans);
v->rcount = malloc(v->nb * sizeof *v->rcount);
if (v->rmeans == NULL || v->rcount == NULL) {
return E_ALLOC;
}
for (i=0; i<v->nb; i++) {
v->rmeans[i] = 0.0;
v->rcount[i] = 0;
}
}
return 0;
}
static void anova_add_F_stat (struct anova *v)
{
int dfn = v->nt - 1;
int dfd = v->n - 1 - dfn;
double MSE, MSTr = v->SSTr / dfn;
if (v->nb > 0) {
dfd -= v->nb - 1;
}
MSE = v->SSE / dfd;
if (MSE > 0) {
v->F = MSTr / MSE;
v->pval = snedecor_cdf_comp(dfn, dfd, v->F);
}
record_test_result(v->F, v->pval);
}
#define anova_obs_ok(y,x,z,t) (!na(y[t]) && !na(x[t]) && \
(z == NULL || !na(z[t])))
/* For one-way anova @list contains response and treatment; for
two-way it should in addition contain the block variable.
@opt can contain OPT_Q to suppress printing.
*/
int gretl_anova (const int *list, const DATASET *dset,
gretlopt opt, PRN *prn)
{
struct anova v;
const double *y, *xt, *xb;
double ybar, dev;
int i, t, t1, t2;
int missvals = 0;
int err = 0;
if (list[0] < 2 || list[0] > 3) {
return E_DATA;
}
anova_init(&v);
t1 = dset->t1;
t2 = dset->t2;
list_adjust_sample(list, &t1, &t2, dset, &missvals);
v.n = t2 - t1 + 1 - missvals;
if (v.n < 2) {
return E_TOOFEW;
}
y = dset->Z[list[1]];
xt = dset->Z[list[2]];
xb = (list[0] == 3)? dset->Z[list[3]] : NULL;
/* check that treatment (and block, if present) are discrete */
if (!series_is_discrete(dset, list[2]) &&
!gretl_isdiscrete(t1, t2, xt)) {
gretl_errmsg_set(_("anova: the treatment variable must be discrete"));
return E_DATA;
}
if (xb != NULL && !series_is_discrete(dset, list[3]) &&
!gretl_isdiscrete(t1, t2, xb)) {
gretl_errmsg_set(_("anova: the block variable must be discrete"));
return E_DATA;
}
v.n = 0;
for (t=t1; t<=t2; t++) {
if (anova_obs_ok(y, xt, xb, t)) {
v.n += 1;
}
}
if (v.n < 2) {
return E_TOOFEW;
}
err = anova_make_arrays(xb, &v);
if (err) {
return err;
}
/* fill tvec and bvec; calculate grand mean */
ybar = 0.0;
i = 0;
for (t=t1; t<=t2; t++) {
if (anova_obs_ok(y, xt, xb, t)) {
v.tvec[i] = xt[t];
ybar += y[t];
if (v.bvec != NULL) {
v.bvec[i] = xb[t];
}
i++;
}
}
ybar /= v.n;
err = anova_make_value_vecs(&v);
if (err) {
goto bailout;
}
err = anova_accounting_arrays(&v);
if (err) {
goto bailout;
}
/* find column (treatment) means */
for (t=t1; t<=t2; t++) {
if (anova_obs_ok(y, xt, xb, t)) {
dev = y[t] - ybar;
v.SST += dev * dev;
for (i=0; i<v.nt; i++) {
if (xt[t] == v.tvals->val[i]) {
v.cmeans[i] += y[t];
v.ccount[i] += 1;
break;
}
}
}
}
for (i=0; i<v.nt; i++) {
v.cmeans[i] /= v.ccount[i];
}
/* sums of squares */
if (v.nb > 0) {
/* two-way ANOVA */
for (t=t1; t<=t2; t++) {
if (anova_obs_ok(y, xt, xb, t)) {
for (i=0; i<v.nb; i++) {
if (xb[t] == v.bvals->val[i]) {
v.rmeans[i] += y[t];
v.rcount[i] += 1;
break;
}
}
}
}
for (i=0; i<v.nb; i++) {
v.rmeans[i] /= v.rcount[i];
dev = v.rmeans[i] - ybar;
v.SSB += dev * dev * v.rcount[i];
}
for (i=0; i<v.nt; i++) {
dev = v.cmeans[i] - ybar;
v.SSTr += dev * dev * v.ccount[i];
}
v.SSE = v.SST - v.SSTr - v.SSB;
} else {
/* one-way ANOVA */
for (t=t1; t<=t2; t++) {
if (!na(xt[t]) && !na(y[t])) {
for (i=0; i<v.nt; i++) {
if (xt[t] == v.tvals->val[i]) {
dev = y[t] - v.cmeans[i];
v.SSE += dev * dev;
break;
}
}
}
}
v.SSTr = v.SST - v.SSE;
}
anova_add_F_stat(&v);
if (!(opt & OPT_Q)) {
const char *yname = dset->varname[list[1]];
const char *tname = dset->varname[list[2]];
pputc(prn, '\n');
pprintf(prn, _("%s, response = %s, treatment = %s:"),
_("Analysis of Variance"), yname, tname);
err = print_anova(&v, prn);
if (!err && v.nb == 0) {
anova_print_means(&v, xt, y, ybar, t1, t2, prn);
}
}
bailout:
anova_free(&v);
return err;
}
|